These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36712493)

  • 1. Diffusive Dynamics of Bacterial Proteome as a Proxy of Cell Death.
    Di Bari D; Timr S; Guiral M; Giudici-Orticoni MT; Seydel T; Beck C; Petrillo C; Derreumaux P; Melchionna S; Sterpone F; Peters J; Paciaroni A
    ACS Cent Sci; 2023 Jan; 9(1):93-102. PubMed ID: 36712493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding the Role of the Global Proteome Dynamics for Cellular Thermal Stability.
    Caviglia B; Di Bari D; Timr S; Guiral M; Giudici-Orticoni MT; Petrillo C; Peters J; Sterpone F; Paciaroni A
    J Phys Chem Lett; 2024 Feb; 15(5):1435-1441. PubMed ID: 38291814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Proteome Physical Chemistry in Cell Behavior.
    Ghosh K; de Graff AM; Sawle L; Dill KA
    J Phys Chem B; 2016 Sep; 120(36):9549-63. PubMed ID: 27513457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical limits of cells and proteomes.
    Dill KA; Ghosh K; Schmit JD
    Proc Natl Acad Sci U S A; 2011 Nov; 108(44):17876-82. PubMed ID: 22006304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineation of proteome changes driven by cell size and growth rate.
    Zatulovskiy E; Lanz MC; Zhang S; McCarthy F; Elias JE; Skotheim JM
    Front Cell Dev Biol; 2022; 10():980721. PubMed ID: 36133920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal proteome allocation and the temperature dependence of microbial growth laws.
    Mairet F; Gouzé JL; de Jong H
    NPJ Syst Biol Appl; 2021 Mar; 7(1):14. PubMed ID: 33686098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of
    Chen P; Terenzi C; Furó I; Berglund LA; Wohlert J
    Biomacromolecules; 2018 Jul; 19(7):2567-2579. PubMed ID: 29688710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective.
    Johnová P; Skalák J; Saiz-Fernández I; Brzobohatý B
    Biochim Biophys Acta; 2016 Aug; 1864(8):916-31. PubMed ID: 26861773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration-dependent dynamical transition in protein: protein interactions at approximately 240 K.
    Kurkal-Siebert V; Agarwal R; Smith JC
    Phys Rev Lett; 2008 Apr; 100(13):138102. PubMed ID: 18518001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring early stages of the chemical unfolding of proteins at the proteome scale.
    Candotti M; Pérez A; Ferrer-Costa C; Rueda M; Meyer T; Gelpí JL; Orozco M
    PLoS Comput Biol; 2013; 9(12):e1003393. PubMed ID: 24348236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal proteome profiling in bacteria: probing protein state
    Mateus A; Bobonis J; Kurzawa N; Stein F; Helm D; Hevler J; Typas A; Savitski MM
    Mol Syst Biol; 2018 Jul; 14(7):e8242. PubMed ID: 29980614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functional proteome landscape of Escherichia coli.
    Mateus A; Hevler J; Bobonis J; Kurzawa N; Shah M; Mitosch K; Goemans CV; Helm D; Stein F; Typas A; Savitski MM
    Nature; 2020 Dec; 588(7838):473-478. PubMed ID: 33299184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridging substrate intake kinetics and bacterial growth phenotypes with flux balance analysis incorporating proteome allocation.
    Zeng H; Yang A
    Sci Rep; 2020 Mar; 10(1):4283. PubMed ID: 32152336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of proteome adaptation reveals a key role of the bacterial envelope in starvation survival.
    Schink S; Ammar C; Chang YF; Zimmer R; Basan M
    Mol Syst Biol; 2022 Dec; 18(12):e11160. PubMed ID: 36479616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Across-proteome modeling of dimer structures for the bottom-up assembly of protein-protein interaction networks.
    Maheshwari S; Brylinski M
    BMC Bioinformatics; 2017 May; 18(1):257. PubMed ID: 28499419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption behavior and proteomic analysis of Escherichia coli P4 under cadmium stress.
    Khan Z; Rehman A; Nisar MA; Zafar S; Zerr I
    Chemosphere; 2017 May; 174():136-147. PubMed ID: 28161514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis.
    Weiner JH; Li L
    Biochim Biophys Acta; 2008 Sep; 1778(9):1698-713. PubMed ID: 17904518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional response of Escherichia coli to temperature shift.
    Gadgil M; Kapur V; Hu WS
    Biotechnol Prog; 2005; 21(3):689-99. PubMed ID: 15932244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical changes of hemoglobin and its surrounding water during thermal denaturation as studied by quasielastic neutron scattering and temperature modulated differential scanning calorimetry.
    Jansson H; Swenson J
    J Chem Phys; 2008 Jun; 128(24):245104. PubMed ID: 18601388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.