BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3671256)

  • 1. Blood lactate changes during exercise at high altitude.
    Binns N; Wright AD; Singh BM; Coote JH; Bradwell AR
    Postgrad Med J; 1987 Mar; 63(737):177-8. PubMed ID: 3671256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceived exertion during hypobaric hypoxia in low- and moderate-altitude natives.
    Maresh CM; Deschenes MR; Seip RL; Armstrong LE; Robertson KL; Noble BJ
    Med Sci Sports Exerc; 1993 Aug; 25(8):945-51. PubMed ID: 8371656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course of muscular blood metabolites during forearm rhythmic exercise in hypoxia.
    Raynaud J; Douguet D; Legros P; Capderou A; Raffestin B; Durand J
    J Appl Physiol (1985); 1986 Apr; 60(4):1203-8. PubMed ID: 3700304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute altitude exposure and altered acid-base states. I. Effects on the exercise ventilation and blood lactate responses.
    McLellan T; Jacobs I; Lewis W
    Eur J Appl Physiol Occup Physiol; 1988; 57(4):435-44. PubMed ID: 3135186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute mountain sickness at intermediate altitude: military mountainous training.
    Pigman EC; Karakla DW
    Am J Emerg Med; 1990 Jan; 8(1):7-10. PubMed ID: 2293837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate during exercise at extreme altitude.
    West JB
    Fed Proc; 1986 Dec; 45(13):2953-7. PubMed ID: 3536595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude.
    Brooks GA; Wolfel EE; Butterfield GE; Cymerman A; Roberts AC; Mazzeo RS; Reeves JT
    Am J Physiol; 1998 Oct; 275(4):R1192-201. PubMed ID: 9756550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreased exercise muscle lactate release after high altitude acclimatization.
    Bender PR; Groves BM; McCullough RE; McCullough RG; Trad L; Young AJ; Cymerman A; Reeves JT
    J Appl Physiol (1985); 1989 Oct; 67(4):1456-62. PubMed ID: 2793749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acetazolamide on exercise at altitude.
    Bradwell AR; Dykes PW; Coote JH
    Sports Med; 1987; 4(3):157-63. PubMed ID: 3589290
    [No Abstract]   [Full Text] [Related]  

  • 10. Acute altitude exposure and altered acid-base states. II. Effects on exercise performance and muscle and blood lactate.
    McLellan T; Jacobs I; Lewis W
    Eur J Appl Physiol Occup Physiol; 1988; 57(4):445-51. PubMed ID: 3396558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise limitation of acetazolamide at altitude (3459 m).
    Bradwell AR; Myers SD; Beazley M; Ashdown K; Harris NG; Bradwell SB; Goodhart J; Imray CH; Wimalasena Y; Edsell ME; Pattinson KT; Wright AD; Harris SJ;
    Wilderness Environ Med; 2014 Sep; 25(3):272-7. PubMed ID: 24931587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of acetazolamide on normoxic and hypoxic exercise in humans at sea level.
    Schoene RB; Bates PW; Larson EB; Pierson DJ
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Dec; 55(6):1772-6. PubMed ID: 6662767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methazolamide and acetazolamide in acute mountain sickness.
    Wright AD; Bradwell AR; Fletcher RF
    Aviat Space Environ Med; 1983 Jul; 54(7):619-21. PubMed ID: 6349608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of plasma growth hormone during exercise in humans at altitude.
    Raynaud J; Drouet L; Martineaud JP; Bordachar J; Coudert J; Durand J
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Feb; 50(2):229-33. PubMed ID: 7204196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-adrenergic blockade does not prevent the lactate response to exercise after acclimatization to high altitude.
    Mazzeo RS; Brooks GA; Butterfield GE; Cymerman A; Roberts AC; Selland M; Wolfel EE; Reeves JT
    J Appl Physiol (1985); 1994 Feb; 76(2):610-5. PubMed ID: 7909797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of the responses of endothelin-1 to exhaustive physical exercise under simulated high-altitude conditions with acute hypoxia.
    Kullmer T; Jungmann E; Haak T; Usadel KH
    Metabolism; 1995 Jan; 44(1):8-9. PubMed ID: 7854170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of respiratory alkalosis during exercise on blood lactate.
    Davies SF; Iber C; Keene SA; McArthur CD; Path MJ
    J Appl Physiol (1985); 1986 Sep; 61(3):948-52. PubMed ID: 3759779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of acute hypoxia at low altitude and acute normoxia at high altitude on performance during a 30-s Wingate test in children.
    Blonc S; Falgairette G; Bedu M; Fellmann N; Spielvogel H; Coudert J
    Int J Sports Med; 1994 Oct; 15(7):403-7. PubMed ID: 8002119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary nitrate supplementation increases acute mountain sickness severity and sense of effort during hypoxic exercise.
    Rossetti GMK; Macdonald JH; Wylie LJ; Little SJ; Newton V; Wood B; Hawkins KA; Beddoe R; Davies HE; Oliver SJ
    J Appl Physiol (1985); 2017 Oct; 123(4):983-992. PubMed ID: 28684588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetazolamide and exercise in sojourners to 6,300 meters--a preliminary study.
    Hackett PH; Schoene RB; Winslow RM; Peters RM; West JB
    Med Sci Sports Exerc; 1985 Oct; 17(5):593-7. PubMed ID: 4068966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.