These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36712808)

  • 1. Mistletoe viscin: a hygro- and mechano-responsive cellulose-based adhesive for diverse material applications.
    Horbelt N; Fratzl P; Harrington MJ
    PNAS Nexus; 2022 Mar; 1(1):pgac026. PubMed ID: 36712808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the Rapid Assembly Process of Stiff Cellulosic Fibers from Mistletoe Berries.
    Horbelt N; Eder M; Bertinetti L; Fratzl P; Harrington MJ
    Biomacromolecules; 2019 Aug; 20(8):3094-3103. PubMed ID: 31314500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibodies raised against tobacco aquaporins of the PIP2 class label viscin tissue of the explosive dwarf mistletoe fruit.
    Ross Friedman CM; Ross BN; Martens GD
    Plant Biol (Stuttg); 2010 Jan; 12(1):229-33. PubMed ID: 20653906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication.
    Rising A; Harrington MJ
    Chem Rev; 2023 Mar; 123(5):2155-2199. PubMed ID: 36508546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid.
    Reddy KO; Zhang J; Zhang J; Rajulu AV
    Carbohydr Polym; 2014 Dec; 114():537-545. PubMed ID: 25263924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose-Based Biomimetics and Their Applications.
    Almeida APC; Canejo JP; Fernandes SN; Echeverria C; Almeida PL; Godinho MH
    Adv Mater; 2018 May; 30(19):e1703655. PubMed ID: 29333680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale additive manufacturing with bioinspired cellulosic materials.
    Sanandiya ND; Vijay Y; Dimopoulou M; Dritsas S; Fernandez JG
    Sci Rep; 2018 Jun; 8(1):8642. PubMed ID: 29872156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New highly hydrated cellulose microfibrils with a tendril helical morphology extracted from agro-waste material: application to removal of dyes from waste water.
    El Achaby M; Fayoud N; Figueroa-Espinoza MC; Ben Youcef H; Aboulkas A
    RSC Adv; 2018 Jan; 8(10):5212-5224. PubMed ID: 35542408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the Cellulose Fiber Interface in a Polymer Composite by Mussel-Inspired Adhesive Nanoparticles with Intrinsic Stress-Sensitive Responsivity.
    Samyn P
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28819-28830. PubMed ID: 32515574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.
    Valle-Delgado JJ; Johansson LS; Österberg M
    Colloids Surf B Biointerfaces; 2016 Feb; 138():86-93. PubMed ID: 26674836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bioinspired elastin-based protein for a cytocompatible underwater adhesive.
    Brennan MJ; Kilbride BF; Wilker JJ; Liu JC
    Biomaterials; 2017 Apr; 124():116-125. PubMed ID: 28192773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing.
    Liang Y; Xu H; Li Z; Zhangji A; Guo B
    Nanomicro Lett; 2022 Sep; 14(1):185. PubMed ID: 36098823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rice straw cellulose nanofibrils reinforced poly(vinyl alcohol) composite films.
    Wang Z; Qiao X; Sun K
    Carbohydr Polym; 2018 Oct; 197():442-450. PubMed ID: 30007633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Friction-Active Surfaces Based on Free-Standing Anchored Cellulose Nanofibrils.
    Schaber CF; Kreitschitz A; Gorb SN
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37566-37574. PubMed ID: 30229647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong, Tough, and Adhesive Polyampholyte/Natural Fiber Composite Hydrogels.
    Yan Y; Xiao L; Teng Q; Jiang Y; Deng Q; Li X; Huang Y
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Densification of Highly Mesoporous Wood Structure into a Strong and Transparent Film.
    Li K; Wang S; Chen H; Yang X; Berglund LA; Zhou Q
    Adv Mater; 2020 Oct; 32(42):e2003653. PubMed ID: 32881202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanopaper Properties and Adhesive Performance of Microfibrillated Cellulose from Different (Ligno-)Cellulosic Raw Materials.
    Pinkl S; Veigel S; Colson J; Gindl-Altmutter W
    Polymers (Basel); 2017 Jul; 9(8):. PubMed ID: 30971001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugarcane bagasse - A source of cellulosic fiber for diverse applications.
    Mahmud MA; Anannya FR
    Heliyon; 2021 Aug; 7(8):e07771. PubMed ID: 34458615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layered Structure and Complex Mechanochemistry Underlie Strength and Versatility in a Bacterial Adhesive.
    Hernando-Pérez M; Setayeshgar S; Hou Y; Temam R; Brun YV; Dragnea B; Berne C
    mBio; 2018 Feb; 9(1):. PubMed ID: 29437925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.