These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36712985)

  • 1. Abatement of radioiodine in aqueous reprocessing off-gas.
    Greaney AT; Ngelale RO; Bruffey SH; Martin LR
    Front Chem; 2022; 10():1078668. PubMed ID: 36712985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capture of Iodine from Nuclear-Fuel-Reprocessing Off-Gas: Influence of Aging on a Reduced Silver Mordenite Adsorbent after Exposure to NO/NO
    Wiechert AI; Ladshaw AP; Moon J; Abney CW; Nan Y; Choi S; Liu J; Tavlarides LL; Tsouris C; Yiacoumi S
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49680-49693. PubMed ID: 33090761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The behavior of iodine in stabilized granular activated carbon and silver mordenite in cementitious waste forms.
    Fujii Yamagata A; Saslow SA; Neeway JJ; Varga T; Reno LR; Zhu Z; Rod KA; Johnson BR; Silverstein JA; Westsik JH; Smith GL; Asmussen RM
    J Environ Radioact; 2022 Apr; 244-245():106824. PubMed ID: 35121278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential Separation of Iodine Species in Nitric Acid Media for Speciation Analysis of
    Jia T; Shi K; Wang Y; Yang J; Hou X
    Anal Chem; 2022 Aug; 94(31):10959-10966. PubMed ID: 35878318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of iodine-bearing silver-impregnated alumina sorbents and their direct solidification
    Sakuragi T; Yoshida S; Kato O
    Front Chem; 2023; 11():1089501. PubMed ID: 36756195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of radio-iodine discharge control methods of nuclear reprocessing plants.
    Umadevi K; Mandal D
    J Environ Radioact; 2021 Aug; 234():106623. PubMed ID: 34004408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized metal organic frameworks for effective capture of radioactive organic iodides.
    Li B; Dong X; Wang H; Ma D; Tan K; Shi Z; Chabal YJ; Han Y; Li J
    Faraday Discuss; 2017 Sep; 201():47-61. PubMed ID: 28654114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of bismuth-based metal-organic frameworks for effective capture and immobilization of radioiodine gas.
    Jung YE; Yang JH; Yim MS
    J Hazard Mater; 2024 Apr; 467():133777. PubMed ID: 38359759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework.
    Xie Y; Pan T; Lei Q; Chen C; Dong X; Yuan Y; Maksoud WA; Zhao L; Cavallo L; Pinnau I; Han Y
    Nat Commun; 2022 May; 13(1):2878. PubMed ID: 35610232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodine Adsorption in Metal Organic Frameworks in the Presence of Humidity.
    Banerjee D; Chen X; Lobanov SS; Plonka AM; Chan X; Daly JA; Kim T; Thallapally PK; Parise JB
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10622-10626. PubMed ID: 29547256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the Composition and Structure of Uranium Oxide Powders Produced via NO
    Peruski KM; Spano TL; Vick MC; Cobble C; Greaney AT; McFarlane J
    ACS Omega; 2024 Mar; 9(9):10979-10991. PubMed ID: 38463331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of metal-organic frameworks for separation of xenon and krypton.
    Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK
    Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iodine Capture with Mechanically Robust Heat-Treated Ag-Al-Si-O Xerogel Sorbents.
    Chong S; Riley BJ; Kuang W; Olszta MJ
    ACS Omega; 2021 May; 6(17):11628-11638. PubMed ID: 34056318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous sorbents for the capture of radioactive iodine compounds: a review.
    Huve J; Ryzhikov A; Nouali H; Lalia V; Augé G; Daou TJ
    RSC Adv; 2018 Aug; 8(51):29248-29273. PubMed ID: 35547978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing Zirconium Organic Gels for Efficient Radioiodine Gas Removal.
    Tan C; Xu Z; Zhang L; Lei M; Lei J; Duan T; Liu W
    Inorg Chem; 2022 Mar; 61(12):4818-4824. PubMed ID: 35289614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pitch-based porous polymer beads for highly efficient iodine capture.
    Chen G; Zhao Q; Wang Z; Jiang M; Zhang L; Duan T; Zhu L
    J Hazard Mater; 2022 Jul; 434():128859. PubMed ID: 35405608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the Durability of Iodine Waste Forms in Dilute Conditions.
    Asmussen RM; Ryan JV; Matyas J; Crum JV; Reiser JT; Avalos N; McElroy EM; Lawter AR; Canfield NC
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30813531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-Activity Relationships between the State of Silver on Different Supports and Their I
    Azambre B; Chebbi M; Ibrahim N
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodine speciation in a silver-amended cementitious system.
    Kaplan DI; Price KA; Xu C; Li D; Lin P; Xing W; Nichols R; Schwehr K; Seaman JC; Ohnuki T; Chen N; Santschi PH
    Environ Int; 2019 May; 126():576-584. PubMed ID: 30852445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver-functionalized silica aerogel: towards an understanding of aging on iodine sorption performance.
    Matyáš J; Ilton ES; Kovařík L
    RSC Adv; 2018 Sep; 8(56):31843-31852. PubMed ID: 35547510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.