These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 36713080)
1. Estimating tissue-specific peptide abundance from public RNA-Seq data. Frentzen A; Greenbaum JA; Kim H; Peters B; Koşaloğlu-Yalçın Z Front Genet; 2023; 14():1082168. PubMed ID: 36713080 [TBL] [Abstract][Full Text] [Related]
2. Combined assessment of MHC binding and antigen abundance improves T cell epitope predictions. Koşaloğlu-Yalçın Z; Lee J; Greenbaum J; Schoenberger SP; Miller A; Kim YJ; Sette A; Nielsen M; Peters B iScience; 2022 Feb; 25(2):103850. PubMed ID: 35128348 [TBL] [Abstract][Full Text] [Related]
3. MHCVision: estimation of global and local false discovery rate for MHC class I peptide binding prediction. Pearngam P; Sriswasdi S; Pisitkun T; Jones AR Bioinformatics; 2021 Nov; 37(21):3830-3838. PubMed ID: 34196671 [TBL] [Abstract][Full Text] [Related]
4. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Tung CW; Ho SY Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427 [TBL] [Abstract][Full Text] [Related]
5. Automated benchmarking of peptide-MHC class I binding predictions. Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196 [TBL] [Abstract][Full Text] [Related]
6. Major histocompatibility complex linked databases and prediction tools for designing vaccines. Singh SP; Mishra BN Hum Immunol; 2016 Mar; 77(3):295-306. PubMed ID: 26585361 [TBL] [Abstract][Full Text] [Related]
7. POPISK: T-cell reactivity prediction using support vector machines and string kernels. Tung CW; Ziehm M; Kämper A; Kohlbacher O; Ho SY BMC Bioinformatics; 2011 Nov; 12():446. PubMed ID: 22085524 [TBL] [Abstract][Full Text] [Related]
8. Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC-Peptide Binding Data Set. Bonsack M; Hoppe S; Winter J; Tichy D; Zeller C; Küpper MD; Schitter EC; Blatnik R; Riemer AB Cancer Immunol Res; 2019 May; 7(5):719-736. PubMed ID: 30902818 [TBL] [Abstract][Full Text] [Related]
9. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. Han Y; Kim D BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Mei S; Li F; Leier A; Marquez-Lago TT; Giam K; Croft NP; Akutsu T; Smith AI; Li J; Rossjohn J; Purcell AW; Song J Brief Bioinform; 2020 Jul; 21(4):1119-1135. PubMed ID: 31204427 [TBL] [Abstract][Full Text] [Related]
11. Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data. Garde C; Ramarathinam SH; Jappe EC; Nielsen M; Kringelum JV; Trolle T; Purcell AW Immunogenetics; 2019 Jul; 71(7):445-454. PubMed ID: 31183519 [TBL] [Abstract][Full Text] [Related]
12. Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes. Jørgensen KW; Buus S; Nielsen M PLoS One; 2010 Dec; 5(12):e15877. PubMed ID: 21209859 [TBL] [Abstract][Full Text] [Related]
13. MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing. O'Donnell TJ; Rubinsteyn A; Laserson U Cell Syst; 2020 Jul; 11(1):42-48.e7. PubMed ID: 32711842 [TBL] [Abstract][Full Text] [Related]
14. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. Bordner AJ; Mittelmann HD BMC Bioinformatics; 2010 Sep; 11():482. PubMed ID: 20868497 [TBL] [Abstract][Full Text] [Related]
15. Predicted MHC peptide binding promiscuity explains MHC class I 'hotspots' of antigen presentation defined by mass spectrometry eluted ligand data. Jappe EC; Kringelum J; Trolle T; Nielsen M Immunology; 2018 Jul; 154(3):407-417. PubMed ID: 29446062 [TBL] [Abstract][Full Text] [Related]
16. Footprints of antigen processing boost MHC class II natural ligand predictions. Barra C; Alvarez B; Paul S; Sette A; Peters B; Andreatta M; Buus S; Nielsen M Genome Med; 2018 Nov; 10(1):84. PubMed ID: 30446001 [TBL] [Abstract][Full Text] [Related]
17. Improvement of peptide identification with considering the abundance of mRNA and peptide. Ma C; Xu S; Liu G; Liu X; Xu X; Wen B; Liu S BMC Bioinformatics; 2017 Feb; 18(1):109. PubMed ID: 28201984 [TBL] [Abstract][Full Text] [Related]
18. Prediction of MHC class I binding peptides, using SVMHC. Dönnes P; Elofsson A BMC Bioinformatics; 2002 Sep; 3():25. PubMed ID: 12225620 [TBL] [Abstract][Full Text] [Related]
19. A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. Altuvia Y; Sette A; Sidney J; Southwood S; Margalit H Hum Immunol; 1997 Nov; 58(1):1-11. PubMed ID: 9438204 [TBL] [Abstract][Full Text] [Related]
20. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy. Kumar N; Mohanty D Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]