These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36713314)

  • 1. Vibration sorting of small droplets on hydrophilic surface by asymmetric contact-line friction.
    Lee Y; Amberg G; Shiomi J
    PNAS Nexus; 2022 May; 1(2):pgac027. PubMed ID: 36713314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of roughness geometry on wetting and dewetting of rough PDMS surfaces.
    Kanungo M; Mettu S; Law KY; Daniel S
    Langmuir; 2014 Jul; 30(25):7358-68. PubMed ID: 24911256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet Impact on Asymmetric Hydrophobic Microstructures.
    Yada S; Lacis U; van der Wijngaart W; Lundell F; Amberg G; Bagheri S
    Langmuir; 2022 Jul; 38(26):7956-7964. PubMed ID: 35737474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact-Angle Hysteresis and Contact-Line Friction on Slippery Liquid-like Surfaces.
    Barrio-Zhang H; Ruiz-Gutiérrez É; Armstrong S; McHale G; Wells GG; Ledesma-Aguilar R
    Langmuir; 2020 Dec; 36(49):15094-15101. PubMed ID: 33258609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size dependent influence of contact line pinning on wetting of nano-textured/patterned silica surfaces.
    Ozcelik HG; Satiroglu E; Barisik M
    Nanoscale; 2020 Oct; 12(41):21376-21391. PubMed ID: 33078810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole Contact Line Pinning for Droplets Impacting on a Hydrophobic Surface Due to Hydrophilic TiO
    Li Y; Zhou J; Hu M; Jing D
    Langmuir; 2021 Jun; 37(22):6673-6680. PubMed ID: 34030443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors controlling the pinning force of liquid droplets on liquid infused surfaces.
    Sadullah MS; Panter JR; Kusumaatmaja H
    Soft Matter; 2020 Sep; 16(35):8114-8121. PubMed ID: 32734997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulating Droplet Wetting and Pinning Behaviors on Pathogen-Modified Hydrophobic Surfaces: Strategies and Working Mechanisms.
    He L; Ding L; Li B; Mu W; Li P; Liu F
    J Agric Food Chem; 2021 Oct; 69(39):11720-11732. PubMed ID: 34550679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces.
    Al-Azawi A; Latikka M; Jokinen V; Franssila S; Ras RHA
    Small; 2017 Oct; 13(38):. PubMed ID: 28815888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How droplets pin on solid surfaces.
    Zhang J; Ding W; Hampel U
    J Colloid Interface Sci; 2023 Jun; 640():940-948. PubMed ID: 36907154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet Impact on Surfaces with Asymmetric Microscopic Features.
    Yada S; Allais B; van der Wijngaart W; Lundell F; Amberg G; Bagheri S
    Langmuir; 2021 Sep; 37(36):10849-10858. PubMed ID: 34469168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Friction Coefficients for Droplets on Solids: The Liquid-Solid Amontons' Laws.
    McHale G; Gao N; Wells GG; Barrio-Zhang H; Ledesma-Aguilar R
    Langmuir; 2022 Apr; 38(14):4425-4433. PubMed ID: 35353534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of sharp solid edges on the droplet wettability.
    Wang Z; Lin K; Zhao YP
    J Colloid Interface Sci; 2019 Sep; 552():563-571. PubMed ID: 31158783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces.
    Yan X; Qin Y; Chen F; Zhao G; Sett S; Hoque MJ; Rabbi KF; Zhang X; Wang Z; Li L; Chen F; Feng J; Miljkovic N
    ACS Nano; 2020 Oct; 14(10):12796-12809. PubMed ID: 33052666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale wetting on groove-patterned surfaces.
    Yong X; Zhang LT
    Langmuir; 2009 May; 25(9):5045-53. PubMed ID: 19326936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.
    Liu G; Craig VS
    Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.