These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 36713369)

  • 1. Inflammation and histone modification in chronic pain.
    Jiang W; Zhang LX; Tan XY; Yu P; Dong M
    Front Immunol; 2022; 13():1087648. PubMed ID: 36713369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives in Pain Research 2014: Neuroinflammation and glial cell activation: The cause of transition from acute to chronic pain?
    Cairns BE; Arendt-Nielsen L; Sacerdote P
    Scand J Pain; 2015 Jan; 6(1):3-6. PubMed ID: 29911589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain.
    Ji RR; Nackley A; Huh Y; Terrando N; Maixner W
    Anesthesiology; 2018 Aug; 129(2):343-366. PubMed ID: 29462012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microglia and spinal cord synaptic plasticity in persistent pain.
    Taves S; Berta T; Chen G; Ji RR
    Neural Plast; 2013; 2013():753656. PubMed ID: 24024042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal Microglia and Astrocytes: Two Key Players in Chronic Visceral Pain Pathogenesis.
    Long JY; Wang XJ; Li XY; Kong XH; Yang G; Zhang D; Yang YT; Shi Z; Ma XP
    Neurochem Res; 2022 Mar; 47(3):545-551. PubMed ID: 34797501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel histone modifications in microglia derived from a mouse model of chronic pain.
    Zhang P; Guergues J; Alleyne AR; Cirino TJ; Nadeau O; Figueroa AM; Stacy HM; Suzuki T; McLaughlin JP; Stevens SM; Liu B
    Proteomics; 2022 May; 22(9):e2100137. PubMed ID: 35081661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain.
    Imai S; Ikegami D; Yamashita A; Shimizu T; Narita M; Niikura K; Furuya M; Kobayashi Y; Miyashita K; Okutsu D; Kato A; Nakamura A; Araki A; Omi K; Nakamura M; James Okano H; Okano H; Ando T; Takeshima H; Ushijima T; Kuzumaki N; Suzuki T; Narita M
    Brain; 2013 Mar; 136(Pt 3):828-43. PubMed ID: 23364351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic pain and neuroinflammation.
    Vergne-Salle P; Bertin P
    Joint Bone Spine; 2021 Dec; 88(6):105222. PubMed ID: 34022418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma.
    Penas C; Navarro X
    Front Cell Neurosci; 2018; 12():158. PubMed ID: 29930500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal cord stimulation reduces cardiac pain through microglial deactivation in rats with chronic myocardial ischemia.
    Wang J; Wu XC; Zhang MM; Ren JH; Sun Y; Liu JZ; Wu XQ; He SY; Li YQ; Zhang JB
    Mol Med Rep; 2021 Dec; 24(6):. PubMed ID: 34608504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice.
    Kim CF; Moalem-Taylor G
    J Pain; 2011 Mar; 12(3):370-83. PubMed ID: 20889388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of locus coeruleus-spinal cord noradrenergic neurons alleviates neuropathic pain in mice via reducing neuroinflammation from astrocytes and microglia in spinal dorsal horn.
    Li J; Wei Y; Zhou J; Zou H; Ma L; Liu C; Xiao Z; Liu X; Tan X; Yu T; Cao S
    J Neuroinflammation; 2022 May; 19(1):123. PubMed ID: 35624514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic regulation of chronic pain.
    Liang L; Lutz BM; Bekker A; Tao YX
    Epigenomics; 2015; 7(2):235-45. PubMed ID: 25942533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive interaction between GPER and β-alanine in the dorsal root ganglion uncovers potential mechanisms: mediating continuous neuronal sensitization and neuroinflammation responses in neuropathic pain.
    Xu Z; Xie W; Feng Y; Wang Y; Li X; Liu J; Xiong Y; He Y; Chen L; Liu G; Wu Q
    J Neuroinflammation; 2022 Jun; 19(1):164. PubMed ID: 35729568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Spinal and Peripheral Neuromodulation and Neuroinflammation: Lessons Learned Thus Far and Future Prospects of Biotype Development.
    Chakravarthy KV; Xing F; Bruno K; Kent AR; Raza A; Hurlemann R; Kinfe TM
    Neuromodulation; 2019 Apr; 22(3):235-243. PubMed ID: 30311715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unconventional Role of Caspase-6 in Spinal Microglia Activation and Chronic Pain.
    Berta T; Lee JE; Park CK
    Mediators Inflamm; 2017; 2017():9383184. PubMed ID: 28270702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interleukin-18 in chronic pain: Focus on pathogenic mechanisms and potential therapeutic targets.
    Ju J; Li Z; Jia X; Peng X; Wang J; Gao F
    Pharmacol Res; 2024 Mar; 201():107089. PubMed ID: 38295914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microglia and mast cells: two tracks on the road to neuroinflammation.
    Skaper SD; Giusti P; Facci L
    FASEB J; 2012 Aug; 26(8):3103-17. PubMed ID: 22516295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of acetyl-histone H3 and acetyl-histone H4 in dorsal root ganglion and spinal dorsal horn in rat chronic pain models.
    Liang L; Tao YX
    Life Sci; 2018 Oct; 211():182-188. PubMed ID: 30236868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrathecal injection of spironolactone attenuates radicular pain by inhibition of spinal microglia activation in a rat model.
    Sun YE; Peng L; Sun X; Bo J; Yang D; Zheng Y; Liu C; Zhu B; Ma Z; Gu X
    PLoS One; 2012; 7(6):e39897. PubMed ID: 22768159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.