These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36713740)

  • 1. Combined Approach to Evaluate Hydrate Slurry Transport Properties through Wetting and Flow Experiments.
    Fossen M; Hatscher S; Ugueto L
    ACS Omega; 2023 Jan; 8(3):2992-3006. PubMed ID: 36713740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of growth kinetics of CO
    Lv XF; Zuo JW; Liu Y; Zhou SD; Lu DY; Yan KL; Shi BH; Zhao HJ
    RSC Adv; 2019 Oct; 9(56):32873-32888. PubMed ID: 35529764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the growth rate of natural gas hydrate in water-in-oil emulsion system using a high-pressure flow loop.
    Lv X; Shi B; Zhou S; Peng H; Lei Y; Yu P
    RSC Adv; 2018 Oct; 8(64):36484-36492. PubMed ID: 35558950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study on the effect of quaternary ammonium salt + monoethylene glycol compound to methane hydrate agglomeration in oil-water system.
    Zhao Q; Liang H
    Heliyon; 2024 Feb; 10(3):e25142. PubMed ID: 38322863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic hydrate inhibition of monoethylene glycol with poly(vinylcaprolactam) in thermodynamically underinhibited system.
    Kim J; Shin K; Seo Y; Cho SJ; Lee JD
    J Phys Chem B; 2014 Jul; 118(30):9065-75. PubMed ID: 24999825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrate slurry flow property in W/O emulsion systems.
    Shi B; Ding L; Liu Y; Yang J; Song S; Wu H; Wang W; Gong J
    RSC Adv; 2018 Mar; 8(21):11436-11445. PubMed ID: 35542812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the decomposition mechanism and kinetic model of natural gas hydrate slurry in water-in-oil emulsion flowing systems.
    Lv X; Liu Y; Zhou S; Shi B; Yan K
    RSC Adv; 2021 Jan; 11(7):3879-3889. PubMed ID: 35424369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Effects of Gas Hydrate Antiagglomerant Molecules on Interfacial Interparticle Force Interactions.
    Hu S; Vo L; Monteiro D; Bodnar S; Prince P; Koh CA
    Langmuir; 2021 Feb; 37(5):1651-1661. PubMed ID: 33507761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of the Hydrate Antiagglomerant on Hydrate Crystallization at the Oil-Water Interface.
    Dong S; Liu C; Han W; Li M; Zhang J; Chen G
    ACS Omega; 2020 Feb; 5(7):3315-3321. PubMed ID: 32118146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Formation Characteristics of CO
    Lv X; Zhang J; Zuo J; Zhao D; Liu Y; Zhou S; Du H; Song S
    ACS Omega; 2022 Jan; 7(2):2444-2457. PubMed ID: 35071932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlating Antiagglomerant Performance with Gas Hydrate Cohesion.
    Phan A; Stamatakis M; Koh CA; Striolo A
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):40002-40012. PubMed ID: 34382786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the Comprehensive Kinetic Model of Natural Gas Hydrate Formation in a Water-in-Oil Emulsion Flow System.
    Lv X; Liu Y; Shi B; Zhou S; Lei Y; Yu P; Duan J
    ACS Omega; 2020 Dec; 5(51):33101-33112. PubMed ID: 33403272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane hydrate formation behaviors in high water-cut oil-in-water systems with hydrate promoters.
    Kele Y; Yuemeng R; Cheng L; Anshan X; Xiaofang L
    RSC Adv; 2021 Sep; 11(49):30597-30609. PubMed ID: 35479858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation and hydrate phase equilibria measurement methods of monoethylene glycol.
    Alef K; Iglauer S; Barifcani A
    MethodsX; 2019; 6():6-14. PubMed ID: 30596024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Study of the Growth Kinetics of Natural Gas Hydrates in an Oil-Water Emulsion System.
    Lv X; Zhang J; Zhao Y; Liu Y; Xu J; Ma Q; Song S; Zhou S
    ACS Omega; 2022 Jan; 7(1):599-616. PubMed ID: 35036727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wettability of Freon hydrates in crude oil/brine emulsions.
    Høiland S; Askvik KM; Fotland P; Alagic E; Barth T; Fadnes F
    J Colloid Interface Sci; 2005 Jul; 287(1):217-25. PubMed ID: 15914170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New in Situ Measurements of the Viscosity of Gas Clathrate Hydrate Slurries Formed from Model Water-in-Oil Emulsions.
    Majid AAA; Wu DT; Koh CA
    Langmuir; 2017 Oct; 33(42):11436-11445. PubMed ID: 28926254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Testing of Monoethylene Glycol Carbon Quantum Dots for Inhibition of Hydrates in CO
    Saikia T; Al-Jaberi J; Sultan A
    ACS Omega; 2021 Jun; 6(23):15136-15146. PubMed ID: 34151093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation into THF hydrate slurry flow behaviour and inhibition by an anti-agglomerant.
    Zhang H; Du J; Wang Y; Lang X; Li G; Chen J; Fan S
    RSC Adv; 2018 Mar; 8(22):11946-11956. PubMed ID: 35539396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Study on Hydrate Safe Flow in Pipelines under a Swirl Flow System.
    Rao Y; Liu Z; Wang S; Li L
    ACS Omega; 2022 May; 7(19):16629-16643. PubMed ID: 35601304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.