These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36713887)

  • 1. Invariance encoding in sliced-Wasserstein space for image classification with limited training data.
    Shifat-E-Rabbi M; Zhuang Y; Li S; Rubaiyat AHM; Yin X; Rohde GK
    Pattern Recognit; 2023 May; 137():. PubMed ID: 36713887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radon Cumulative Distribution Transform Subspace Modeling for Image Classification.
    Shifat-E-Rabbi M; Yin X; Rubaiyat AHM; Li S; Kolouri S; Aldroubi A; Nichols JM; Rohde GK
    J Math Imaging Vis; 2021 Nov; 63(9):1185-1203. PubMed ID: 35464640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. End-to-End Signal Classification in Signed Cumulative Distribution Transform Space.
    Rubaiyat AHM; Li S; Yin X; Shifat-E-Rabbi M; Zhuang Y; Rohde GK
    IEEE Trans Pattern Anal Mach Intell; 2024 Mar; PP():. PubMed ID: 38427542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Image-Based Plant Disease Classification With Generative Adversarial Network Under Limited Training Set.
    Bi L; Hu G
    Front Plant Sci; 2020; 11():583438. PubMed ID: 33343595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Representation Invariances of CNNs and Human Visual Information Processing Based on Data Augmentation.
    Cui Y; Zhang C; Qiao K; Wang L; Yan B; Tong L
    Brain Sci; 2020 Sep; 10(9):. PubMed ID: 32887405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.
    Otálora S; Marini N; Müller H; Atzori M
    BMC Med Imaging; 2021 May; 21(1):77. PubMed ID: 33964886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport-based pattern recognition versus deep neural networks in underwater OAM communications.
    Neary PL; Nichols JM; Watnik AT; Judd KP; Rohde GK; Lindle JR; Flann NS
    J Opt Soc Am A Opt Image Sci Vis; 2021 Jul; 38(7):954-962. PubMed ID: 34263751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomedical image augmentation using Augmentor.
    Bloice MD; Roth PM; Holzinger A
    Bioinformatics; 2019 Nov; 35(21):4522-4524. PubMed ID: 30989173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning-to-augment strategy using noisy and denoised data: Improving generalizability of deep CNN for the detection of COVID-19 in X-ray images.
    Momeny M; Neshat AA; Hussain MA; Kia S; Marhamati M; Jahanbakhshi A; Hamarneh G
    Comput Biol Med; 2021 Sep; 136():104704. PubMed ID: 34352454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rectified Wasserstein Generative Adversarial Networks for Perceptual Image Restoration.
    Ma H; Liu D; Wu F
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3648-3663. PubMed ID: 35731773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CarveMix: A simple data augmentation method for brain lesion segmentation.
    Zhang X; Liu C; Ou N; Zeng X; Zhuo Z; Duan Y; Xiong X; Yu Y; Liu Z; Liu Y; Ye C
    Neuroimage; 2023 May; 271():120041. PubMed ID: 36933626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images.
    Motamed S; Rogalla P; Khalvati F
    Inform Med Unlocked; 2021; 27():100779. PubMed ID: 34841040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technical Note: PYRO-NN: Python reconstruction operators in neural networks.
    Syben C; Michen M; Stimpel B; Seitz S; Ploner S; Maier AK
    Med Phys; 2019 Nov; 46(11):5110-5115. PubMed ID: 31389023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks.
    Budach S; Marsico A
    Bioinformatics; 2018 Sep; 34(17):3035-3037. PubMed ID: 29659719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gnocis: An integrated system for interactive and reproducible analysis and modelling of cis-regulatory elements in Python 3.
    Bredesen-Aa BA; Rehmsmeier M
    PLoS One; 2022; 17(9):e0274338. PubMed ID: 36084008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective and efficient active learning for deep learning-based tissue image analysis.
    Meirelles ALS; Kurc T; Kong J; Ferreira R; Saltz J; Teodoro G
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36943380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmentation of FTIR spectral datasets using Wasserstein generative adversarial networks for cancer liquid biopsies.
    McHardy RG; Antoniou G; Conn JJA; Baker MJ; Palmer DS
    Analyst; 2023 Aug; 148(16):3860-3869. PubMed ID: 37435822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.