These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36714120)

  • 1. Feature preserving mesh network for semantic segmentation of retinal vasculature to support ophthalmic disease analysis.
    Imran SMA; Saleem MW; Hameed MT; Hussain A; Naqvi RA; Lee SW
    Front Med (Lausanne); 2022; 9():1040562. PubMed ID: 36714120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetic and Hypertensive Retinopathy Screening in Fundus Images Using Artificially Intelligent Shallow Architectures.
    Arsalan M; Haider A; Choi J; Park KR
    J Pers Med; 2021 Dec; 12(1):. PubMed ID: 35055322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aiding the Diagnosis of Diabetic and Hypertensive Retinopathy Using Artificial Intelligence-Based Semantic Segmentation.
    Arsalan M; Owais M; Mahmood T; Cho SW; Park KR
    J Clin Med; 2019 Sep; 8(9):. PubMed ID: 31514466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
    Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ
    PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curv-Net: Curvilinear structure segmentation network based on selective kernel and multi-Bi-ConvLSTM.
    He Y; Sun H; Yi Y; Chen W; Kong J; Zheng C
    Med Phys; 2022 May; 49(5):3144-3158. PubMed ID: 35172016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TP-Net: Two-Path Network for Retinal Vessel Segmentation.
    Qu Z; Zhuo L; Cao J; Li X; Yin H; Wang Z
    IEEE J Biomed Health Inform; 2023 Jan; PP():. PubMed ID: 37021912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules.
    Rong Y; Xiong Y; Li C; Chen Y; Wei P; Wei C; Fan Z
    Med Biol Eng Comput; 2023 Jul; 61(7):1745-1755. PubMed ID: 36899285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIC-Net: multi-scale integrated context network for automatic retinal vessel segmentation in fundus image.
    Wang J; Zhou L; Yuan Z; Wang H; Shi C
    Math Biosci Eng; 2023 Feb; 20(4):6912-6931. PubMed ID: 37161134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal blood vessel segmentation based on Densely Connected U-Net.
    Cheng YL; Ma MN; Zhang LJ; Jin CJ; Ma L; Zhou Y
    Math Biosci Eng; 2020 Apr; 17(4):3088-3108. PubMed ID: 32987518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Retinal Vessel Segmentation in Color Fundus Images via Fully Attention-Based Networks.
    Li K; Qi X; Luo Y; Yao Z; Zhou X; Sun M
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):2071-2081. PubMed ID: 33001809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-precision retinal blood vessel segmentation based on a multi-stage and dual-channel deep learning network.
    Guo H; Meng J; Zhao Y; Zhang H; Dai C
    Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38198716
    [No Abstract]   [Full Text] [Related]  

  • 12. Spatial attention U-Net model with Harris hawks optimization for retinal blood vessel and optic disc segmentation in fundus images.
    Kumar PR; Shilpa B; Jha RK; Chellibouina VS
    Int Ophthalmol; 2024 Aug; 44(1):359. PubMed ID: 39207645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fundus vessel segmentation method based on double skip connections combined with deep supervision.
    Liu Q; Zhou F; Shen J; Xu J; Wan C; Xu X; Yan Z; Yao J
    Front Cell Dev Biol; 2024; 12():1477819. PubMed ID: 39430046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TDCAU-Net: retinal vessel segmentation using transformer dilated convolutional attention-based U-Net method.
    Li C; Li Z; Liu W
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38052089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SFA-Net: Scale and Feature Aggregate Network for Retinal Vessel Segmentation.
    Ni J; Liu J; Li X; Chen Z
    J Healthc Eng; 2022; 2022():4695136. PubMed ID: 36312595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Densely connected U-Net retinal vessel segmentation algorithm based on multi-scale feature convolution extraction.
    Du X; Wang J; Sun W
    Med Phys; 2021 Jul; 48(7):3827-3841. PubMed ID: 34028030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BSCN: bidirectional symmetric cascade network for retinal vessel segmentation.
    Guo Y; Peng Y
    BMC Med Imaging; 2020 Feb; 20(1):20. PubMed ID: 32070306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning-Based Detection of Pigment Signs for Analysis and Diagnosis of Retinitis Pigmentosa.
    Arsalan M; Baek NR; Owais M; Mahmood T; Park KR
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32570943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the trainable B-COSFIRE filter for retinal blood vessel segmentation.
    Badawi SA; Fraz MM
    PeerJ; 2018; 6():e5855. PubMed ID: 30479888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HRD-Net: High resolution segmentation network with adaptive learning ability of retinal vessel features.
    Liu J; Zhao D; Shen J; Geng P; Zhang Y; Yang J; Zhang Z
    Comput Biol Med; 2024 May; 173():108295. PubMed ID: 38520920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.