BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 367144)

  • 1. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole.
    Yokoyama MT; Carlson JR
    Am J Clin Nutr; 1979 Jan; 32(1):173-8. PubMed ID: 367144
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of xenobiotics by strains of intestinal bacteria.
    Soleim HA; Scheline RR
    Acta Pharmacol Toxicol (Copenh); 1972; 31(5):471-80. PubMed ID: 4631168
    [No Abstract]   [Full Text] [Related]  

  • 3. Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro.
    Yokoyama MT; Carlson JR
    Appl Microbiol; 1974 Mar; 27(3):540-8. PubMed ID: 4545142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characteristics of a skatole-producing Lactobacillus sp. from the bovine rumen.
    Yokoyama MT; Carlson JR; Holdeman LV
    Appl Environ Microbiol; 1977 Dec; 34(6):837-42. PubMed ID: 563703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria.
    Xu ZR; Hu CH; Wang MQ
    J Gen Appl Microbiol; 2002 Apr; 48(2):83-90. PubMed ID: 12469304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formation of nitrosamines by human intestinal bacteria.
    Hawksworth G; Hill MJ
    Biochem J; 1971 Mar; 122(1):28P-29P. PubMed ID: 4942015
    [No Abstract]   [Full Text] [Related]  

  • 7. Microbiological transformation of bile acids.
    Hayakawa S
    Adv Lipid Res; 1973; 11():143-92. PubMed ID: 4581568
    [No Abstract]   [Full Text] [Related]  

  • 8. Reduction of ruminal 3-methylindole production and the prevention of tryptophan-induced acute bovine pulmonary edema and emphysema.
    Hammond AC; Bray TM; Cummins KA; Carlson JR; Bradley BJ
    Am J Vet Res; 1978 Sep; 39(9):1404-6. PubMed ID: 697149
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolism of cholic acid in germfree animals after the establishment in the intestinal tract of deconjugating and 7 alpha-dehydroxylating bacteria.
    Gustafsson BE; Midtvedt T; Norman A
    Acta Pathol Microbiol Scand; 1968; 72(3):433-43. PubMed ID: 4297296
    [No Abstract]   [Full Text] [Related]  

  • 10. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure.
    Whitehead TR; Price NP; Drake HL; Cotta MA
    Appl Environ Microbiol; 2008 Mar; 74(6):1950-3. PubMed ID: 18223109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro.
    Mohammed N; Onodera R; Or-Rashid MM
    Amino Acids; 2003; 24(1-2):73-80. PubMed ID: 12624737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria.
    Jensen MT; Cox RP; Jensen BB
    Appl Environ Microbiol; 1995 Aug; 61(8):3180-4. PubMed ID: 7487051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of indoleacetic acid by intestinal anaerobes.
    Chung KT; Anderson GM; Fulk GE
    J Bacteriol; 1975 Oct; 124(1):573-5. PubMed ID: 1236846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconjugation of bile acids by intestinal bacteria: review of literature and additional studies.
    Shimada K; Bricknell KS; Finegold SM
    J Infect Dis; 1969 Mar; 119(3):273-81. PubMed ID: 4888907
    [No Abstract]   [Full Text] [Related]  

  • 15. Mutagenic activity of tryptophan metabolites produced by rat intestinal microflora.
    Bowden JP; Chung KT; Andrews AW
    J Natl Cancer Inst; 1976 Oct; 57(4):921-4. PubMed ID: 794501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of indolic compounds by rumen bacteria isolated from grazing ruminants.
    Attwood G; Li D; Pacheco D; Tavendale M
    J Appl Microbiol; 2006 Jun; 100(6):1261-71. PubMed ID: 16696673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reduction of bile pigments by faecal and intestinal bacteria.
    Fahmy K; Gray CH; Nicholson DC
    Biochim Biophys Acta; 1972 Mar; 264(1):85-97. PubMed ID: 4553810
    [No Abstract]   [Full Text] [Related]  

  • 18. [Value of intestinal microflora for balanced human nutrition].
    Haenel H
    Vopr Pitan; 1972; 31(1):7-12. PubMed ID: 4558483
    [No Abstract]   [Full Text] [Related]  

  • 19. Microbial bile acid transformation.
    Midtvedt T
    Am J Clin Nutr; 1974 Nov; 27(11):1341-7. PubMed ID: 4217103
    [No Abstract]   [Full Text] [Related]  

  • 20. Isolation and identification of intestinal steroid-desulfating bacteria from rats and humans.
    Van Eldere J; Robben J; De Pauw G; Merckx R; Eyssen H
    Appl Environ Microbiol; 1988 Aug; 54(8):2112-7. PubMed ID: 3178214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.