These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Zinc oxide nanoparticles and 24-epibrassinolide alleviates Cu toxicity in tomato by regulating ROS scavenging, stomatal movement and photosynthesis. Faizan M; Bhat JA; Noureldeen A; Ahmad P; Yu F Ecotoxicol Environ Saf; 2021 May; 218():112293. PubMed ID: 33957422 [TBL] [Abstract][Full Text] [Related]
23. Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants. Azmat A; Tanveer Y; Yasmin H; Hassan MN; Shahzad A; Reddy M; Ahmad A Chemosphere; 2022 Jun; 297():133982. PubMed ID: 35181419 [TBL] [Abstract][Full Text] [Related]
24. Effects of Zinc Oxide Nanoparticles on Physiological and Anatomical Indices in Spring Barley Tissues. Rajput VD; Minkina T; Fedorenko A; Chernikova N; Hassan T; Mandzhieva S; Sushkova S; Lysenko V; Soldatov MA; Burachevskaya M Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34208886 [TBL] [Abstract][Full Text] [Related]
25. Linking exogenous foliar application of glycine betaine and stomatal characteristics with salinity stress tolerance in cotton (Gossypium hirsutum L.) seedlings. Hamani AKM; Li S; Chen J; Amin AS; Wang G; Xiaojun S; Zain M; Gao Y BMC Plant Biol; 2021 Mar; 21(1):146. PubMed ID: 33743608 [TBL] [Abstract][Full Text] [Related]
26. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Faizan M; Bhat JA; Chen C; Alyemeni MN; Wijaya L; Ahmad P; Yu F Plant Physiol Biochem; 2021 Apr; 161():122-130. PubMed ID: 33581620 [TBL] [Abstract][Full Text] [Related]
27. The Influence of Zinc Oxide Nanoparticles and Salt Stress on the Morphological and Some Biochemical Characteristics of Ahmed M; Marrez DA; Rizk R; Zedan M; Abdul-Hamid D; Decsi K; Kovács GP; Tóth Z Plants (Basel); 2024 May; 13(10):. PubMed ID: 38794488 [TBL] [Abstract][Full Text] [Related]
28. Combined effect of Bacillus fortis IAGS 223 and zinc oxide nanoparticles to alleviate cadmium phytotoxicity in Cucumis melo. Shah AA; Aslam S; Akbar M; Ahmad A; Khan WU; Yasin NA; Ali B; Rizwan M; Ali S Plant Physiol Biochem; 2021 Jan; 158():1-12. PubMed ID: 33278679 [TBL] [Abstract][Full Text] [Related]
29. Interventional Effect of Zinc Oxide Nanoparticles with Ahmed M; Marrez DA; Rizk R; Abdul-Hamid D; Tóth Z; Decsi K Nanomaterials (Basel); 2024 Aug; 14(16):. PubMed ID: 39195379 [TBL] [Abstract][Full Text] [Related]
31. Application of Silicon, Zinc, and Zeolite Nanoparticles-A Tool to Enhance Drought Stress Tolerance in Coriander Plants for Better Growth Performance and Productivity. Mahmoud AWM; Rashad HM; Esmail SEA; Alsamadany H; Abdeldaym EA Plants (Basel); 2023 Jul; 12(15):. PubMed ID: 37570992 [TBL] [Abstract][Full Text] [Related]
32. Foliar-applied magnesium nanoparticles modulate drought stress through changes in physio-biochemical attributes and essential oil profile of yarrow (Achillea millefolium L.). Ojagh SE; Moaveni P Environ Sci Pollut Res Int; 2022 Aug; 29(39):59374-59384. PubMed ID: 35386083 [TBL] [Abstract][Full Text] [Related]
33. Sorghum drought tolerance is enhanced by cerium oxide nanoparticles via stomatal regulation and osmolyte accumulation. M D; K S VB; R R; P J Plant Physiol Biochem; 2024 Jul; 212():108733. PubMed ID: 38761547 [TBL] [Abstract][Full Text] [Related]
34. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. Chastain DR; Snider JL; Collins GD; Perry CD; Whitaker J; Byrd SA J Plant Physiol; 2014 Nov; 171(17):1576-85. PubMed ID: 25151126 [TBL] [Abstract][Full Text] [Related]
35. Facile Coating of Urea With Low-Dose ZnO Nanoparticles Promotes Wheat Performance and Enhances Zn Uptake Under Drought Stress. Dimkpa CO; Andrews J; Fugice J; Singh U; Bindraban PS; Elmer WH; Gardea-Torresdey JL; White JC Front Plant Sci; 2020; 11():168. PubMed ID: 32174943 [TBL] [Abstract][Full Text] [Related]
36. Combined application of zinc oxide nanoparticles and biofertilizer to induce salt resistance in safflower by regulating ion homeostasis and antioxidant defence responses. Yasmin H; Mazher J; Azmat A; Nosheen A; Naz R; Hassan MN; Noureldeen A; Ahmad P Ecotoxicol Environ Saf; 2021 May; 218():112262. PubMed ID: 33964549 [TBL] [Abstract][Full Text] [Related]
37. Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress. Iftikhar A; Ali S; Yasmeen T; Arif MS; Zubair M; Rizwan M; Alhaithloul HAS; Alayafi AAM; Soliman MH Environ Pollut; 2019 Nov; 254(Pt B):113109. PubMed ID: 31487671 [TBL] [Abstract][Full Text] [Related]
38. ZnO nanoparticles efficiently enhance drought tolerance in Karimian Z; Samiei L Front Plant Sci; 2023; 14():1063618. PubMed ID: 36968426 [TBL] [Abstract][Full Text] [Related]
39. Application of ZnO Nanoparticles Encapsulated in Mesoporous Silica on the Abaxial Side of a Gao X; Kundu A; Persson DP; Szameitat A; Minutello F; Husted S; Ghoshal S Environ Sci Technol; 2023 Dec; 57(51):21704-21714. PubMed ID: 38079531 [TBL] [Abstract][Full Text] [Related]
40. Foliar-applied nano-cerium dioxide differentially affect morpho-physiological traits and essential oil profile of Salvia mirzayanii Rech. f. & Esfand under drought stress and post-stress recovery conditions. Fallah Imani A; Gomarian M; Ghorbanpour M; Ramak P; Chavoshi S Plant Physiol Biochem; 2023 Oct; 203():108046. PubMed ID: 37757721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]