BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36714755)

  • 1. Reproductive development of common buckwheat (
    Sokoloff DD; Malyshkina RA; Remizowa MV; Rudall PJ; Fomichev CI; Fesenko AN; Fesenko IN; Logacheva MD
    Front Plant Sci; 2022; 13():1081981. PubMed ID: 36714755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of high temperature resistance in two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum.
    Aubert L; Konrádová D; Kebbas S; Barris S; Quinet M
    J Plant Physiol; 2020 Aug; 251():153222. PubMed ID: 32634749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Plant Morphology, Yield and Nutritional Quality of
    Aubert L; Decamps C; Jacquemin G; Quinet M
    Plants (Basel); 2021 Jan; 10(2):. PubMed ID: 33525666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Racemose inflorescences of monocots: structural and morphogenetic interaction at the flower/inflorescence level.
    Remizowa MV; Rudall PJ; Choob VV; Sokoloff DD
    Ann Bot; 2013 Nov; 112(8):1553-66. PubMed ID: 23172413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The role of gene tepal-like bract (TLB) in the separation between the bracts and perianth in Fagopyrum esculentum moench].
    Fesenko AN; Fesenko IN; Logacheva MD; Penin AA
    Genetika; 2005 Dec; 41(12):1644-9. PubMed ID: 16396450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species.
    Gupta N; Sharma SK; Rana JC; Chauhan RS
    J Plant Physiol; 2011 Nov; 168(17):2117-23. PubMed ID: 21872967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum) and Comparative Analysis with Common Buckwheat (F. esculentum).
    Cho KS; Yun BK; Yoon YH; Hong SY; Mekapogu M; Kim KH; Yang TJ
    PLoS One; 2015; 10(5):e0125332. PubMed ID: 25966355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Resolution Transcriptome Atlas and Improved Genome Assembly of Common Buckwheat,
    Penin AA; Kasianov AS; Klepikova AV; Kirov IV; Gerasimov ES; Fesenko AN; Logacheva MD
    Front Plant Sci; 2021; 12():612382. PubMed ID: 33815435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inflorescence structure and control of flowering time and duration by light in buckwheat (Fagopyrum esculentum Moench).
    Quinet M; Cawoy V; Lefèvre I; Van Miegroet F; Jacquemart AL; Kinet JM
    J Exp Bot; 2004 Jul; 55(402):1509-17. PubMed ID: 15208346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential transcript profiling through cDNA-AFLP showed complexity of rutin biosynthesis and accumulation in seeds of a nutraceutical food crop (Fagopyrum spp.).
    Gupta N; Naik PK; Chauhan RS
    BMC Genomics; 2012 Jun; 13():231. PubMed ID: 22686486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA methylation analysis of floral parts revealed dynamic changes during the development of homostylous Fagopyrum tataricum and heterostylous F. esculentum flowers.
    Sala-Cholewa K; Tomasiak A; Nowak K; Piński A; Betekhtin A
    BMC Plant Biol; 2024 May; 24(1):448. PubMed ID: 38783206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Complete Chloroplast Genome Sequences of Eight
    Fan Y; Jin Y; Ding M; Tang Y; Cheng J; Zhang K; Zhou M
    Front Plant Sci; 2021; 12():799904. PubMed ID: 34975990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different drought resistance mechanisms between two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum.
    Aubert L; Konrádová D; Barris S; Quinet M
    Physiol Plant; 2021 Jun; 172(2):577-586. PubMed ID: 33090466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridization with
    Fesenko IN; Bondarev NI; Rezunova OV; Evsyuticheva DE; Fesenko AN
    Breed Sci; 2022 Jun; 72(3):232-237. PubMed ID: 36408320
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Cheng C; Fan Y; Tang Y; Zhang K; Joshi DC; Jha R; Janovská D; Meglič V; Yan M; Zhou M
    Front Plant Sci; 2020; 11():1073. PubMed ID: 32765557
    [No Abstract]   [Full Text] [Related]  

  • 16. The molecular phylogenetic position of
    Min D; Shi W; Dehshiri MM; Gou Y; Li W; Zhang K; Zhou M; Li B
    PhytoKeys; 2023; 220():109-126. PubMed ID: 37251612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Analysis of Four Buckwheat Species Based on Morphology and Complete Chloroplast Genome Sequences.
    Wang CL; Ding MQ; Zou CY; Zhu XM; Tang Y; Zhou ML; Shao JR
    Sci Rep; 2017 Jul; 7(1):6514. PubMed ID: 28747666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification, subcellular localization, and expression analysis of the phosphatidyl ethanolamine-binding protein family reveals the candidates involved in flowering and yield regulation of Tartary buckwheat (
    Nie M; Li L; He C; Lu J; Guo H; Li X; Jiang M; Zhan R; Sun W; Yin J; Wu Q
    PeerJ; 2024; 12():e17183. PubMed ID: 38560476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum.
    Zhao J; Jiang L; Tang X; Peng L; Li X; Zhao G; Zhong L
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29361741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum).
    Logacheva MD; Kasianov AS; Vinogradov DV; Samigullin TH; Gelfand MS; Makeev VJ; Penin AA
    BMC Genomics; 2011 Jan; 12():30. PubMed ID: 21232141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.