These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36714803)

  • 1. A data-driven approach for motion planning of industrial robots controlled by high-level motion commands.
    Hou S; Bdiwi M; Rashid A; Krusche S; Ihlenfeldt S
    Front Robot AI; 2022; 9():1030668. PubMed ID: 36714803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guided Stochastic Optimization for Motion Planning.
    Magyar B; Tsiogkas N; Brito B; Patel M; Lane D; Wang S
    Front Robot AI; 2019; 6():105. PubMed ID: 33501120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep transferable motion-adaptive fault detection method for industrial robots using a residual-convolutional neural network.
    Oh Y; Kim Y; Na K; Youn BD
    ISA Trans; 2022 Sep; 128(Pt B):521-534. PubMed ID: 34924171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human motion behavior while interacting with an industrial robot.
    Bortot D; Ding H; Antonopolous A; Bengler K
    Work; 2012; 41 Suppl 1():1699-707. PubMed ID: 22316958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutual-Collision-Avoidance Scheme Synthesized by Neural Networks for Dual Redundant Robot Manipulators Executing Cooperative Tasks.
    Zhang Z; Zheng L; Chen Z; Kong L; Karimi HR
    IEEE Trans Neural Netw Learn Syst; 2021 Mar; 32(3):1052-1066. PubMed ID: 32310785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation and Transfer of Robot Motion Policies for Close Proximity Human-Robot Interaction.
    Hoang Dinh K; Oguz OS; Elsayed M; Wollherr D
    Front Robot AI; 2019; 6():69. PubMed ID: 33501084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FMG- and RNN-Based Estimation of Motor Intention of Upper-Limb Motion in Human-Robot Collaboration.
    Anvaripour M; Khoshnam M; Menon C; Saif M
    Front Robot AI; 2020; 7():573096. PubMed ID: 33501334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining a neural network controller structure for a rubbertuator robot.
    Ozkan M; Inoue K; Negishi K; Yamanaka T
    Neural Netw; 2000; 13(4-5):533-44. PubMed ID: 10946398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymptotically Optimal Motion Planning for Learned Tasks Using Time-Dependent Cost Maps.
    Bowen C; Ye G; Alterovitz R
    IEEE Trans Autom Sci Eng; 2015 Jan; 12(1):171-182. PubMed ID: 26279642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating Better Collision-Free Trajectory for Robot Motion Planning by Linearly Constrained Quadratic Programming.
    Liu Y; Zha F; Li M; Guo W; Jia Y; Wang P; Zang Y; Sun L
    Front Neurorobot; 2021; 15():724116. PubMed ID: 34434099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-in-the-Loop Robot Control for Human-Robot Collaboration: HUMAN INTENTION ESTIMATION AND SAFE TRAJECTORY TRACKING CONTROL FOR COLLABORATIVE TASKS.
    Dani AP; Salehi I; Rotithor G; Trombetta D; Ravichandar H
    IEEE Control Syst; 2020 Dec; 40(6):29-56. PubMed ID: 35002195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient neural network approach to dynamic robot motion planning.
    Yang SX; Meng M
    Neural Netw; 2000 Mar; 13(2):143-8. PubMed ID: 10935758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence.
    Hu J
    Comput Intell Neurosci; 2022; 2022():4347772. PubMed ID: 35186062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces.
    Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hebbian learning for online prediction, neural recall and classical conditioning of anthropomimetic robot arm motions.
    Feldotto B; Walter F; Röhrbein F; Knoll A
    Bioinspir Biomim; 2018 Oct; 13(6):066009. PubMed ID: 30221625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion and Trajectory Constraints Control Modeling for Flexible Surgical Robotic Systems.
    Omisore OM; Han S; Al-Handarish Y; Du W; Duan W; Akinyemi TO; Wang L
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32272641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wearable IMU System for Flexible Teleoperation of a Collaborative Industrial Robot.
    Škulj G; Vrabič R; Podržaj P
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Based NMPC for Local Motion Planning of Last-Mile Delivery Robot.
    Imad M; Doukhi O; Lee DJ; Kim JC; Kim YJ
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots.
    Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M
    J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.