These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36714828)
1. AlphaDrug: protein target specific de novo molecular generation. Qian H; Lin C; Zhao D; Tu S; Xu L PNAS Nexus; 2022 Sep; 1(4):pgac227. PubMed ID: 36714828 [TBL] [Abstract][Full Text] [Related]
2. De Novo Drug Design Using Transformer-Based Machine Translation and Reinforcement Learning of an Adaptive Monte Carlo Tree Search. Ang D; Rakovski C; Atamian HS Pharmaceuticals (Basel); 2024 Jan; 17(2):. PubMed ID: 38399376 [TBL] [Abstract][Full Text] [Related]
3. Enabling target-aware molecule generation to follow multi objectives with Pareto MCTS. Yang Y; Chen G; Li J; Li J; Zhang O; Zhang X; Li L; Hao J; Wang E; Heng PA Commun Biol; 2024 Sep; 7(1):1074. PubMed ID: 39223327 [TBL] [Abstract][Full Text] [Related]
4. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers. Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054 [TBL] [Abstract][Full Text] [Related]
5. cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation. Wang Y; Zhao H; Sciabola S; Wang W Molecules; 2023 May; 28(11):. PubMed ID: 37298906 [TBL] [Abstract][Full Text] [Related]
6. Target-specific novel molecules with their recipe: Incorporating synthesizability in the design process. Krishnan SR; Bung N; Srinivasan R; Roy A J Mol Graph Model; 2024 Jun; 129():108734. PubMed ID: 38442440 [TBL] [Abstract][Full Text] [Related]
7. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study. Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583 [TBL] [Abstract][Full Text] [Related]
8. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Grechishnikova D Sci Rep; 2021 Jan; 11(1):321. PubMed ID: 33432013 [TBL] [Abstract][Full Text] [Related]
9. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning. Liu X; Ye K; van Vlijmen HWT; IJzerman AP; van Westen GJP J Cheminform; 2023 Feb; 15(1):24. PubMed ID: 36803659 [TBL] [Abstract][Full Text] [Related]
10. MTMol-GPT: De novo multi-target molecular generation with transformer-based generative adversarial imitation learning. Ai C; Yang H; Liu X; Dong R; Ding Y; Guo F PLoS Comput Biol; 2024 Jun; 20(6):e1012229. PubMed ID: 38924082 [TBL] [Abstract][Full Text] [Related]
11. A flexible data-free framework for structure-based Du H; Jiang D; Zhang O; Wu Z; Gao J; Zhang X; Wang X; Deng Y; Kang Y; Li D; Pan P; Hsieh CY; Hou T Chem Sci; 2023 Nov; 14(43):12166-12181. PubMed ID: 37969589 [TBL] [Abstract][Full Text] [Related]
12. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design. Limbu S; Dakshanamurthy S Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386 [TBL] [Abstract][Full Text] [Related]
13. Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design. Haroon S; C A H; A S J Comput Biol Chem; 2023 Oct; 106():107911. PubMed ID: 37450999 [TBL] [Abstract][Full Text] [Related]
14. A pharmacophore-guided deep learning approach for bioactive molecular generation. Zhu H; Zhou R; Cao D; Tang J; Li M Nat Commun; 2023 Oct; 14(1):6234. PubMed ID: 37803000 [TBL] [Abstract][Full Text] [Related]
15. Retrosynthetic planning with experience-guided Monte Carlo tree search. Hong S; Zhuo HH; Jin K; Shao G; Zhou Z Commun Chem; 2023 Jun; 6(1):120. PubMed ID: 37301940 [TBL] [Abstract][Full Text] [Related]
16. A self-learning Monte Carlo tree search algorithm for robot path planning. Li W; Liu Y; Ma Y; Xu K; Qiu J; Gan Z Front Neurorobot; 2023; 17():1039644. PubMed ID: 37483541 [TBL] [Abstract][Full Text] [Related]
17. TransGEM: a molecule generation model based on Transformer with gene expression data. Liu Y; Yu H; Duan X; Zhang X; Cheng T; Jiang F; Tang H; Ruan Y; Zhang M; Zhang H; Zhang Q Bioinformatics; 2024 May; 40(5):. PubMed ID: 38632084 [TBL] [Abstract][Full Text] [Related]
18. Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach. Lee G; Jang GH; Kang HY; Song G PLoS One; 2021; 16(6):e0253760. PubMed ID: 34170922 [TBL] [Abstract][Full Text] [Related]
19. Enhancing reinforcement learning for de novo molecular design applying self-attention mechanisms. Pereira TO; Abbasi M; Arrais JP Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903414 [TBL] [Abstract][Full Text] [Related]
20. MOTiFS: Monte Carlo Tree Search Based Feature Selection. Chaudhry MU; Lee JH Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]