These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36714899)

  • 1. Effects of Abacus Training on Auditory Spatial Maturation in Children with Normal Hearing.
    Sanjana M; Nisha KV
    Int Arch Otorhinolaryngol; 2023 Jan; 27(1):e56-e66. PubMed ID: 36714899
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of Maturation and Chronological Aging on Auditory Spatial Processing: A Cross-Sectional Study Across Life Span.
    Nisha KV; Uppunda AK; Konadath S
    Am J Audiol; 2023 Mar; 32(1):119-134. PubMed ID: 36548963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial rehabilitation using virtual auditory space training paradigm in individuals with sensorineural hearing impairment.
    Nisha KV; Uppunda AK; Kumar RT
    Front Neurosci; 2022; 16():1080398. PubMed ID: 36733923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiles and predictors of auditory functioning in abacus-trained children.
    Nisha KV; Sanjana M; Rohith VS; Rajalakshmi K; Prabhu P
    Int J Pediatr Otorhinolaryngol; 2021 Mar; 142():110608. PubMed ID: 33482407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Spatial Training Paradigms on Auditory Spatial Refinement in Normal-Hearing Listeners: A Comparative Study.
    Nisha KV; Kumar AU
    J Audiol Otol; 2022 Jul; 26(3):113-121. PubMed ID: 35196448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Musical Training and Its Association With Age-Related Changes in Binaural, Temporal, and Spatial Processing.
    Nisha KV; Durai R; Konadath S
    Am J Audiol; 2022 Sep; 31(3):669-683. PubMed ID: 35772171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of auditory working memory in children with abacus training.
    Roy MS; Swarna K; Prabhu P
    Eur Arch Otorhinolaryngol; 2020 May; 277(5):1531-1536. PubMed ID: 32055956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual Auditory Space Training-Induced Changes of Auditory Spatial Processing in Listeners with Normal Hearing.
    Nisha KV; Kumar AU
    J Int Adv Otol; 2017 Apr; 13(1):118-127. PubMed ID: 28555603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test re-test reliability of virtual acoustic space identification (VASI) test in young adults with normal hearing.
    Nisha KV; Bhatarai P; Suresh K; Ghimire S; Prabhu P
    J Otol; 2023 Jan; 18(1):55-62. PubMed ID: 36820153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of spatial processing deficits in hearing-impaired children and adults.
    Glyde H; Cameron S; Dillon H; Hickson L
    J Am Acad Audiol; 2014 Jun; 25(6):549-61. PubMed ID: 25313545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment and comparison of auditory and visual reaction time in abacus trained and untrained students aged 8 to 13 years in the south Indian population.
    Philip RA; Yerrabelli D; Bhavya RL
    J Family Med Prim Care; 2021 Nov; 10(11):4077-4081. PubMed ID: 35136770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The development of auditory speech perception and spatial hearing abilities within one year after cochlear implantation in preschool prelingual deaf children].
    Zhang J; Fu X; Wang X; Li H; Liu JX; Guo XY; Fu LY; Wang NY
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2021 Aug; 56(8):812-818. PubMed ID: 34521164
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of aging on spatial hearing.
    Adel Ghahraman M; Ashrafi M; Mohammadkhani G; Jalaie S
    Aging Clin Exp Res; 2020 Apr; 32(4):733-739. PubMed ID: 31203530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study.
    Huang J; Du FL; Yao Y; Wan Q; Wang XS; Chen FY
    J Zhejiang Univ Sci B; 2015 Aug; 16(8):661-71. PubMed ID: 26238541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences.
    Ozmeral EJ; Eddins DA; Eddins AC
    J Neurophysiol; 2019 Aug; 122(2):737-748. PubMed ID: 31242052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Approaches to Measure Spatial Release From Masking in Children With Bilateral Cochlear Implants.
    Peng ZE; Litovsky RY
    Ear Hear; 2022; 43(1):101-114. PubMed ID: 34133400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The listening in spatialized noise-sentences test (LISN-S): comparison to the prototype LISN and results from children with either a suspected (central) auditory processing disorder or a confirmed language disorder.
    Cameron S; Dillon H
    J Am Acad Audiol; 2008 May; 19(5):377-91. PubMed ID: 19253811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Preliminary Study of the Effects of Attentive Music Listening on Cochlear Implant Users' Speech Perception, Quality of Life, and Behavioral and Objective Measures of Frequency Change Detection.
    Firestone GM; McGuire K; Liang C; Zhang N; Blankenship CM; Xiang J; Zhang F
    Front Hum Neurosci; 2020; 14():110. PubMed ID: 32296318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Music and psychoacoustic perception abilities in cochlear implant users with auditory neuropathy spectrum disorder.
    Yüksel M; Çiprut A
    Int J Pediatr Otorhinolaryngol; 2020 Apr; 131():109865. PubMed ID: 31945735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.