These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 36715275)

  • 1. Denoising adaptive deep clustering with self-attention mechanism on single-cell sequencing data.
    Su Y; Lin R; Wang J; Tan D; Zheng C
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network.
    Wang J; Xia J; Wang H; Su Y; Zheng CH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scGAAC: A graph attention autoencoder for clustering single-cell RNA-sequencing data.
    Zhang L; Xiang H; Wang F; Chen Z; Shen M; Ma J; Liu H; Zheng H
    Methods; 2024 Sep; 229():115-124. PubMed ID: 38950719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scAMAC: self-supervised clustering of scRNA-seq data based on adaptive multi-scale autoencoder.
    Tan D; Yang C; Wang J; Su Y; Zheng C
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell RNA sequencing data analysis utilizing multi-type graph neural networks.
    Xu L; Li Z; Ren J; Liu S; Xu Y
    Comput Biol Med; 2024 Sep; 179():108921. PubMed ID: 39059210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scLEGA: an attention-based deep clustering method with a tendency for low expression of genes on single-cell RNA-seq data.
    Liu Z; Liang Y; Wang G; Zhang T
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39060167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis.
    Wang HY; Zhao JP; Su YS; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3685-3694. PubMed ID: 34752401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DCRELM: dual correlation reduction network-based extreme learning machine for single-cell RNA-seq data clustering.
    Gao Q; Ai Q
    Sci Rep; 2024 Jun; 14(1):13541. PubMed ID: 38866896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering single-cell RNA sequencing data via iterative smoothing and self-supervised discriminative embedding.
    Xie J; Ruan S; Tu M; Yuan Z; Hu J; Li H; Li S
    Oncogene; 2024 Jul; 43(29):2279-2292. PubMed ID: 38834657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimensionality Reduction of Single-Cell RNA Sequencing Data by Combining Entropy and Denoising AutoEncoder.
    Zhu X; Li J; Lin Y; Zhao L; Wang J; Peng X
    J Comput Biol; 2022 Oct; 29(10):1074-1084. PubMed ID: 35834604
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.