These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Genome-Wide Mapping of UV-Induced DNA Damage with CPD-Seq. Mao P; Wyrick JJ Methods Mol Biol; 2020; 2175():79-94. PubMed ID: 32681485 [TBL] [Abstract][Full Text] [Related]
23. RNA interference against transcription elongation factor SII does not support its role in transcription-coupled nucleotide excision repair. Mackinnon-Roy C; Stubbert LJ; McKay BC Mutat Res; 2011 Jan; 706(1-2):53-8. PubMed ID: 21070792 [TBL] [Abstract][Full Text] [Related]
24. A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair. van den Heuvel D; Spruijt CG; González-Prieto R; Kragten A; Paulsen MT; Zhou D; Wu H; Apelt K; van der Weegen Y; Yang K; Dijk M; Daxinger L; Marteijn JA; Vertegaal ACO; Ljungman M; Vermeulen M; Luijsterburg MS Nat Commun; 2021 Feb; 12(1):1342. PubMed ID: 33637760 [TBL] [Abstract][Full Text] [Related]
25. An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: an update. Banerjee S; Roy S Cell Cycle; 2021 Sep; 20(18):1760-1784. PubMed ID: 34437813 [TBL] [Abstract][Full Text] [Related]
26. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Dutta A; Yang C; Sengupta S; Mitra S; Hegde ML Cell Mol Life Sci; 2015 May; 72(9):1679-98. PubMed ID: 25575562 [TBL] [Abstract][Full Text] [Related]
27. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand. Bucheli M; Sweder K Mol Microbiol; 2004 Jun; 52(6):1653-63. PubMed ID: 15186415 [TBL] [Abstract][Full Text] [Related]
28. Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution. Mao P; Smerdon MJ; Roberts SA; Wyrick JJ Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9057-62. PubMed ID: 27457959 [TBL] [Abstract][Full Text] [Related]
29. Exploring the SSBreakome: genome-wide mapping of DNA single-strand breaks by next-generation sequencing. Zilio N; Ulrich HD FEBS J; 2021 Jul; 288(13):3948-3961. PubMed ID: 32965079 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of RNA polymerase II stalling by DNA alkylation. Malvezzi S; Farnung L; Aloisi CMN; Angelov T; Cramer P; Sturla SJ Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12172-12177. PubMed ID: 29087308 [TBL] [Abstract][Full Text] [Related]
31. Influence of chromatin remodeling in the removal of UVC-induced damage in TCR proficient and deficient Chinese hamster cells. Martínez-López W; Moreno-Ortega D; Valencia-Payan J; Sammader P; Meschini R; Palitti F Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt A):124-131. PubMed ID: 30389155 [TBL] [Abstract][Full Text] [Related]
32. High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors. Duan M; Sivapragasam S; Antony JS; Ulibarri J; Hinz JM; Poon GMK; Wyrick JJ; Mao P Elife; 2022 Mar; 11():. PubMed ID: 35289750 [TBL] [Abstract][Full Text] [Related]
33. Long-term, genome-wide kinetic analysis of the effect of the circadian clock and transcription on the repair of cisplatin-DNA adducts in the mouse liver. Yang Y; Liu Z; Selby CP; Sancar A J Biol Chem; 2019 Aug; 294(32):11960-11968. PubMed ID: 31217280 [TBL] [Abstract][Full Text] [Related]
34. Using ChIP-chip and ChIP-seq to study the regulation of gene expression: genome-wide localization studies reveal widespread regulation of transcription elongation. Gilchrist DA; Fargo DC; Adelman K Methods; 2009 Aug; 48(4):398-408. PubMed ID: 19275938 [TBL] [Abstract][Full Text] [Related]
35. The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. Brosh RM; Balajee AS; Selzer RR; Sunesen M; Proietti De Santis L; Bohr VA Mol Biol Cell; 1999 Nov; 10(11):3583-94. PubMed ID: 10564257 [TBL] [Abstract][Full Text] [Related]
36. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Lee KB; Wang D; Lippard SJ; Sharp PA Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4239-44. PubMed ID: 11904382 [TBL] [Abstract][Full Text] [Related]
37. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. Wang W; Xu J; Chong J; Wang D DNA Repair (Amst); 2018 Nov; 71():43-55. PubMed ID: 30174298 [TBL] [Abstract][Full Text] [Related]
38. Structural basis of human transcription-DNA repair coupling. Kokic G; Wagner FR; Chernev A; Urlaub H; Cramer P Nature; 2021 Oct; 598(7880):368-372. PubMed ID: 34526721 [TBL] [Abstract][Full Text] [Related]
39. RADAR-seq: A RAre DAmage and Repair sequencing method for detecting DNA damage on a genome-wide scale. Zatopek KM; Potapov V; Maduzia LL; Alpaslan E; Chen L; Evans TC; Ong JL; Ettwiller LM; Gardner AF DNA Repair (Amst); 2019 Aug; 80():36-44. PubMed ID: 31247470 [TBL] [Abstract][Full Text] [Related]
40. DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. Perlow RA; Kolbanovskii A; Hingerty BE; Geacintov NE; Broyde S; Scicchitano DA J Mol Biol; 2002 Aug; 321(1):29-47. PubMed ID: 12139931 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]