These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36715542)

  • 1. Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology.
    Barrows JM; Goley ED
    J Bacteriol; 2023 Feb; 205(2):e0038422. PubMed ID: 36715542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape.
    Sundararajan K; Goley ED
    Subcell Biochem; 2017; 84():103-137. PubMed ID: 28500524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
    Gonzalez D; Collier J
    J Bacteriol; 2014 Jul; 196(14):2514-25. PubMed ID: 24794566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control.
    Jenal U
    FEMS Microbiol Rev; 2000 Apr; 24(2):177-91. PubMed ID: 10717313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus.
    Boutte CC; Henry JT; Crosson S
    J Bacteriol; 2012 Jan; 194(1):28-35. PubMed ID: 22020649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical modeling of the cell cycle and cell fate emergence in Caulobacter crescentus.
    Quiñones-Valles C; Sánchez-Osorio I; Martínez-Antonio A
    PLoS One; 2014; 9(11):e111116. PubMed ID: 25369202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus.
    Hallgren J; Koonce K; Felletti M; Mortier J; Turco E; Jonas K
    PLoS Genet; 2023 Nov; 19(11):e1010882. PubMed ID: 38011258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cycle and positional constraints on FtsZ localization and the initiation of cell division in Caulobacter crescentus.
    Quardokus EM; Din N; Brun YV
    Mol Microbiol; 2001 Feb; 39(4):949-59. PubMed ID: 11251815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-cycle control of a cloned chromosomal origin of replication from Caulobacter crescentus.
    Marczynski GT; Shapiro L
    J Mol Biol; 1992 Aug; 226(4):959-77. PubMed ID: 1518064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caulobacter crescentus: model system extraordinaire.
    Govers SK; Jacobs-Wagner C
    Curr Biol; 2020 Oct; 30(19):R1151-R1158. PubMed ID: 33022259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of surface adhesion in Caulobacter crescentus.
    Bodenmiller D; Toh E; Brun YV
    J Bacteriol; 2004 Mar; 186(5):1438-47. PubMed ID: 14973013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell division control in Caulobacter crescentus.
    Collier J
    Biochim Biophys Acta Gene Regul Mech; 2019 Jul; 1862(7):685-690. PubMed ID: 29715525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus.
    Fischer B; Rummel G; Aldridge P; Jenal U
    Mol Microbiol; 2002 Apr; 44(2):461-78. PubMed ID: 11972783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus.
    Biondi EG; Skerker JM; Arif M; Prasol MS; Perchuk BS; Laub MT
    Mol Microbiol; 2006 Jan; 59(2):386-401. PubMed ID: 16390437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayered control of chromosome replication in
    Frandi A; Collier J
    Biochem Soc Trans; 2019 Feb; 47(1):187-196. PubMed ID: 30626709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The control of spatial organization during cellular differentiation.
    Maddock J
    Cell Mol Biol Res; 1994; 40(3):199-205. PubMed ID: 7874196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell cycle-dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus.
    Martin ME; Trimble MJ; Brun YV
    Mol Microbiol; 2004 Oct; 54(1):60-74. PubMed ID: 15458405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of chromosomal replication in Caulobacter crescentus.
    Collier J
    Plasmid; 2012 Mar; 67(2):76-87. PubMed ID: 22227374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the temporal dynamics of master regulators and CtrA proteolysis in Caulobacter crescentus cell cycle.
    Xu C; Hollis H; Dai M; Yao X; Watson LT; Cao Y; Chen M
    PLoS Comput Biol; 2022 Jan; 18(1):e1009847. PubMed ID: 35089921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the Heme Nitric Oxide/Oxygen Binding Protein (H-NOX) on Cell Cycle Regulation in Caulobacter crescentus.
    Lee-Lopez C; Islam MS; Meléndez AB; Yukl ET
    Mol Cell Proteomics; 2023 Dec; 22(12):100679. PubMed ID: 37979947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.