These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 36715630)
1. Natural overexpression of CAROTENOID CLEAVAGE DIOXYGENASE 4 in tomato alters carotenoid flux. Yoo HJ; Chung MY; Lee HA; Lee SB; Grandillo S; Giovannoni JJ; Lee JM Plant Physiol; 2023 May; 192(2):1289-1306. PubMed ID: 36715630 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of a new carotenoid cleavage dioxygenase NtCCD10 derived from Nicotiana tabacum. Li F; Gong X; Liang Y; Peng L; Han X; Wen M Planta; 2022 Oct; 256(5):100. PubMed ID: 36251100 [TBL] [Abstract][Full Text] [Related]
3. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Simkin AJ; Schwartz SH; Auldridge M; Taylor MG; Klee HJ Plant J; 2004 Dec; 40(6):882-92. PubMed ID: 15584954 [TBL] [Abstract][Full Text] [Related]
4. A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts. D'Ambrosio C; Stigliani AL; Rambla JL; Frusciante S; Diretto G; Enfissi EMA; Granell A; Fraser PD; Giorio G Plant Sci; 2023 Mar; 328():111575. PubMed ID: 36572066 [TBL] [Abstract][Full Text] [Related]
5. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls. Bruno M; Beyer P; Al-Babili S Arch Biochem Biophys; 2015 Apr; 572():126-133. PubMed ID: 25703194 [TBL] [Abstract][Full Text] [Related]
6. AtPDS overexpression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content. McQuinn RP; Wong B; Giovannoni JJ Plant Biotechnol J; 2018 Feb; 16(2):482-494. PubMed ID: 28703352 [TBL] [Abstract][Full Text] [Related]
7. A carotenoid cleavage dioxygenase 4 from Paulownia tomentosa determines visual and aroma signals in flowers. Morote L; Rubio-Moraga Á; López-Jiménez AJ; Argandoña J; Niza E; Ahrazem O; Gómez-Gómez L Plant Sci; 2023 Apr; 329():111609. PubMed ID: 36737005 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Ibdah M; Azulay Y; Portnoy V; Wasserman B; Bar E; Meir A; Burger Y; Hirschberg J; Schaffer AA; Katzir N; Tadmor Y; Lewinsohn E Phytochemistry; 2006 Aug; 67(15):1579-89. PubMed ID: 16563447 [TBL] [Abstract][Full Text] [Related]
9. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation. Karppinen K; Zoratti L; Sarala M; Carvalho E; Hirsimäki J; Mentula H; Martens S; Häggman H; Jaakola L BMC Plant Biol; 2016 Apr; 16():95. PubMed ID: 27098458 [TBL] [Abstract][Full Text] [Related]
10. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Rubio-Moraga A; Rambla JL; Fernández-de-Carmen A; Trapero-Mozos A; Ahrazem O; Orzáez D; Granell A; Gómez-Gómez L Plant Mol Biol; 2014 Nov; 86(4-5):555-69. PubMed ID: 25204497 [TBL] [Abstract][Full Text] [Related]
11. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. Sun L; Yuan B; Zhang M; Wang L; Cui M; Wang Q; Leng P J Exp Bot; 2012 May; 63(8):3097-108. PubMed ID: 22345638 [TBL] [Abstract][Full Text] [Related]
15. Analysis of apocarotenoid volatiles during the development of Ficus carica fruits and characterization of carotenoid cleavage dioxygenase genes. Nawade B; Shaltiel-Harpaz L; Yahyaa M; Bosamia TC; Kabaha A; Kedoshim R; Zohar M; Isaacson T; Ibdah M Plant Sci; 2020 Jan; 290():110292. PubMed ID: 31779901 [TBL] [Abstract][Full Text] [Related]
16. The Genes of Xi W; Zhang L; Liu S; Zhao G Front Plant Sci; 2020; 11():607715. PubMed ID: 33391319 [TBL] [Abstract][Full Text] [Related]
17. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Isaacson T; Ronen G; Zamir D; Hirschberg J Plant Cell; 2002 Feb; 14(2):333-42. PubMed ID: 11884678 [TBL] [Abstract][Full Text] [Related]
18. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. Luo Z; Zhang J; Li J; Yang C; Wang T; Ouyang B; Li H; Giovannoni J; Ye Z New Phytol; 2013 Apr; 198(2):442-452. PubMed ID: 23406468 [TBL] [Abstract][Full Text] [Related]
19. zeta-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Breitenbach J; Sandmann G Planta; 2005 Mar; 220(5):785-93. PubMed ID: 15503129 [TBL] [Abstract][Full Text] [Related]
20. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Lee JM; Joung JG; McQuinn R; Chung MY; Fei Z; Tieman D; Klee H; Giovannoni J Plant J; 2012 Apr; 70(2):191-204. PubMed ID: 22111515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]