These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36715808)
1. Energy forecasting of the building-integrated photovoltaic façade using hybrid LSTM. Sarkar S; Karthick A; Kumar Chinnaiyan V; Patil PP Environ Sci Pollut Res Int; 2023 Apr; 30(16):45977-45985. PubMed ID: 36715808 [TBL] [Abstract][Full Text] [Related]
2. Dynamic real-time forecasting technique for reclaimed water volumes in urban river environmental management. Zhang L; Wang C; Hu W; Wang X; Wang H; Sun X; Ren W; Feng Y Environ Res; 2024 May; 248():118267. PubMed ID: 38244969 [TBL] [Abstract][Full Text] [Related]
3. Temperature Prediction of Seasonal Frozen Subgrades Based on CEEMDAN-LSTM Hybrid Model. Chen L; Liu X; Zeng C; He X; Chen F; Zhu B Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957299 [TBL] [Abstract][Full Text] [Related]
4. Multi-step forecasting of dissolved oxygen in River Ganga based on CEEMDAN-AdaBoost-BiLSTM-LSTM model. Pant N; Toshniwal D; Gurjar BR Sci Rep; 2024 May; 14(1):11199. PubMed ID: 38755217 [TBL] [Abstract][Full Text] [Related]
5. A new denoising approach based on mode decomposition applied to the stock market time series: 2LE-CEEMDAN. Akşehir ZD; Kılıç E PeerJ Comput Sci; 2024; 10():e1852. PubMed ID: 38435596 [TBL] [Abstract][Full Text] [Related]
6. Forecasting PM 2.5 concentration based on integrating of CEEMDAN decomposition method with SVM and LSTM. Ameri R; Hsu CC; Band SS; Zamani M; Shu CM; Khorsandroo S Ecotoxicol Environ Saf; 2023 Nov; 266():115572. PubMed ID: 37837695 [TBL] [Abstract][Full Text] [Related]
7. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting. Yang S; Yuan A; Yu Z Environ Sci Pollut Res Int; 2023 Jan; 30(5):11689-11705. PubMed ID: 36098919 [TBL] [Abstract][Full Text] [Related]
8. An ensemble LSTM-based AQI forecasting model with decomposition-reconstruction technique via CEEMDAN and fuzzy entropy. Wu Z; Zhao W; Lv Y Air Qual Atmos Health; 2022; 15(12):2299-2311. PubMed ID: 36196368 [TBL] [Abstract][Full Text] [Related]
9. CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems. Zeng L; Li Z; Yang J; Xu X Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554314 [TBL] [Abstract][Full Text] [Related]
10. A Solar Irradiance Forecasting Framework Based on the CEE-WGAN-LSTM Model. Li Q; Zhang D; Yan K Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905005 [TBL] [Abstract][Full Text] [Related]
11. Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach. Bian J; Hou T; Ren D; Lin C; Qiao X; Ma X; Ma J; Wang Y; Wang J; Liang X Sci Rep; 2024 Aug; 14(1):17777. PubMed ID: 39090145 [TBL] [Abstract][Full Text] [Related]
12. An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting. Wang J; Sun X; Cheng Q; Cui Q Sci Total Environ; 2021 Mar; 762():143099. PubMed ID: 33127140 [TBL] [Abstract][Full Text] [Related]
13. A New Hybrid Forecasting Model Based on SW-LSTM and Wavelet Packet Decomposition: A Case Study of Oil Futures Prices. Wang J; Wang J Comput Intell Neurosci; 2021; 2021():7653091. PubMed ID: 34335724 [TBL] [Abstract][Full Text] [Related]
14. A novel hybrid model for six main pollutant concentrations forecasting based on improved LSTM neural networks. Xu S; Li W; Zhu Y; Xu A Sci Rep; 2022 Aug; 12(1):14434. PubMed ID: 36002466 [TBL] [Abstract][Full Text] [Related]
15. A Hybrid Model for Coronavirus Disease 2019 Forecasting Based on Ensemble Empirical Mode Decomposition and Deep Learning. Liu S; Wan Y; Yang W; Tan A; Jian J; Lei X Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612939 [TBL] [Abstract][Full Text] [Related]
16. Load forecasting method based on CEEMDAN and TCN-LSTM. Heng L; Hao C; Nan LC PLoS One; 2024; 19(7):e0300496. PubMed ID: 38968242 [TBL] [Abstract][Full Text] [Related]
17. A new hybrid model for photovoltaic output power prediction. Zou J; Wei M; Song Q; Zhou Z Environ Sci Pollut Res Int; 2023 Dec; 30(58):122934-122957. PubMed ID: 37980325 [TBL] [Abstract][Full Text] [Related]
18. Gas Concentration Prediction Based on IWOA-LSTM-CEEMDAN Residual Correction Model. Xu N; Wang X; Meng X; Chang H Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746193 [TBL] [Abstract][Full Text] [Related]
19. Improved CEEMDAN, GA, and SVR Model for Oil Price Forecasting. Lu Y; Luo J; Cui Y; He Z; Xia F J Environ Public Health; 2022; 2022():3741370. PubMed ID: 35795536 [TBL] [Abstract][Full Text] [Related]
20. A New Time Series Forecasting Model Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Temporal Convolutional Network. Guo C; Kang X; Xiong J; Wu J Neural Process Lett; 2022 Oct; ():1-21. PubMed ID: 36248248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]