These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36716039)

  • 21. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.
    Schlegl T; Waldstein SM; Bogunovic H; Endstraßer F; Sadeghipour A; Philip AM; Podkowinski D; Gerendas BS; Langs G; Schmidt-Erfurth U
    Ophthalmology; 2018 Apr; 125(4):549-558. PubMed ID: 29224926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Etiology of Macular Edema Defined by Deep Learning in Optical Coherence Tomography Scans.
    Padilla-Pantoja FD; Sanchez YD; Quijano-Nieto BA; Perdomo OJ; Gonzalez FA
    Transl Vis Sci Technol; 2022 Sep; 11(9):29. PubMed ID: 36169966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated Classification of Inherited Retinal Diseases in Optical Coherence Tomography Images Using Few-shot Learning.
    Zhao Q; Mai SW; Li Q; Huang GC; Gao MC; Yang WL; Wang G; Ma Y; Li L; Peng XY
    Biomed Environ Sci; 2023 May; 36(5):431-440. PubMed ID: 37253669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.
    Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K
    Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images.
    Sotoudeh-Paima S; Jodeiri A; Hajizadeh F; Soltanian-Zadeh H
    Comput Biol Med; 2022 May; 144():105368. PubMed ID: 35259614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification.
    Fang L; Wang C; Li S; Rabbani H; Chen X; Liu Z
    IEEE Trans Med Imaging; 2019 Aug; 38(8):1959-1970. PubMed ID: 30763240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images.
    Fu H; Baskaran M; Xu Y; Lin S; Wong DWK; Liu J; Tun TA; Mahesh M; Perera SA; Aung T
    Am J Ophthalmol; 2019 Jul; 203():37-45. PubMed ID: 30849350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning.
    Treder M; Lauermann JL; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):259-265. PubMed ID: 29159541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Learning Classification Models Built with Two-step Transfer Learning for Age Related Macular Degeneration Diagnosis.
    An G; Akiba M; Yokota H; Motozawa N; Takagi S; Mandai M; Kitahata S; Hirami Y; Takahashi M; Kurimoto Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2049-2052. PubMed ID: 31946304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DISEASE CLASSIFICATION OF MACULAR OPTICAL COHERENCE TOMOGRAPHY SCANS USING DEEP LEARNING SOFTWARE: Validation on Independent, Multicenter Data.
    Bhatia KK; Graham MS; Terry L; Wood A; Tranos P; Trikha S; Jaccard N
    Retina; 2020 Aug; 40(8):1549-1557. PubMed ID: 31584557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Deep learning based lesion detection from anterior segment optical coherence tomography images and its application in the diagnosis of keratoconus].
    Li DF; Dong YL; Xie S; Guo Z; Li SX; Guo Y; Lyu B; Xie LX
    Zhonghua Yan Ke Za Zhi; 2021 Jun; 57(6):447-453. PubMed ID: 34098694
    [No Abstract]   [Full Text] [Related]  

  • 32. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Wojtkowski M; Witkin AJ; Duker JS; Ko TH; Carvalho M; Schuman JS; Kowalczyk A; Fujimoto JG
    Ophthalmology; 2006 Nov; 113(11):2054.e1-14. PubMed ID: 17074565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning.
    Wilson M; Chopra R; Wilson MZ; Cooper C; MacWilliams P; Liu Y; Wulczyn E; Florea D; Hughes CO; Karthikesalingam A; Khalid H; Vermeirsch S; Nicholson L; Keane PA; Balaskas K; Kelly CJ
    JAMA Ophthalmol; 2021 Sep; 139(9):964-973. PubMed ID: 34236406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiscale dual attention mechanism for fluid segmentation of optical coherence tomography images.
    Chen M; Ma W; Shi L; Li M; Wang C; Zheng G
    Appl Opt; 2021 Aug; 60(23):6761-6768. PubMed ID: 34613154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images.
    Yellapragada B; Hornauer S; Snyder K; Yu S; Yiu G
    Ophthalmol Retina; 2022 Feb; 6(2):116-129. PubMed ID: 34217854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders.
    Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J
    Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans.
    Alsaih K; Yusoff MZ; Tang TB; Faye I; Mériaudeau F
    Comput Methods Programs Biomed; 2020 Oct; 195():105566. PubMed ID: 32504911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning.
    Guo Y; Hormel TT; Xiong H; Wang J; Hwang TS; Jia Y
    Transl Vis Sci Technol; 2020 Oct; 9(2):54. PubMed ID: 33110708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linking Function and Structure with ReSensNet: Predicting Retinal Sensitivity from OCT using Deep Learning.
    Seeböck P; Vogl WD; Waldstein SM; Orlando JI; Baratsits M; Alten T; Arikan M; Mylonas G; Bogunović H; Schmidt-Erfurth U
    Ophthalmol Retina; 2022 Jun; 6(6):501-511. PubMed ID: 35134543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generative adversarial network-based deep learning approach in classification of retinal conditions with optical coherence tomography images.
    Sun LC; Pao SI; Huang KH; Wei CY; Lin KF; Chen PN
    Graefes Arch Clin Exp Ophthalmol; 2023 May; 261(5):1399-1412. PubMed ID: 36441228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.