These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36716325)

  • 1. How Do Colloidal Nanoparticles Move in a Solution under an Electric Field?:
    Jeong W; Park Y; Hong YK; Kim I; Son H; Ha DH
    J Phys Chem Lett; 2023 Feb; 14(5):1230-1238. PubMed ID: 36716325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Visualization of Planar Assembly of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric Fields.
    Ferrick A; Wang M; Woehl TJ
    Langmuir; 2018 May; 34(21):6237-6248. PubMed ID: 29727566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic Deposition of Aged and Charge Controlled Colloidal Copper Sulfide Nanoparticles.
    Park Y; Kang H; Jeong W; Son H; Ha DH
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33429956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact Enhancement in Nanoparticle Assemblies through Electrophoretic Deposition.
    Park Y; Jeong W; Ahn J; Hong YK; Hwang E; Kim M; Hwang YJ; Oh SJ; Ha DH
    ACS Omega; 2022 Nov; 7(45):41021-41032. PubMed ID: 36406526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle ζ -potentials.
    Doane TL; Chuang CH; Hill RJ; Burda C
    Acc Chem Res; 2012 Mar; 45(3):317-26. PubMed ID: 22074988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A General Method for High-Performance Li-Ion Battery Electrodes from Colloidal Nanoparticles without the Introduction of Binders or Conductive-Carbon Additives: The Cases of MnS, Cu(2-x)S, and Ge.
    Ha DH; Ly T; Caron JM; Zhang H; Fritz KE; Robinson RD
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25053-60. PubMed ID: 26535449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter.
    Ghosh S; Mashayekhi H; Pan B; Bhowmik P; Xing B
    Langmuir; 2008 Nov; 24(21):12385-91. PubMed ID: 18823134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing in Vitro Impedance and Physico-Chemical Properties of Neural Electrodes by Electrophoretic Deposition of Pt Nanoparticles.
    Koenen S; Rehbock C; Heissler HE; Angelov SD; Schwabe K; Krauss JK; Barcikowski S
    Chemphyschem; 2017 May; 18(9):1108-1117. PubMed ID: 28122149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilizer-free silver nanoparticles as efficient catalysts for electrochemical reduction of oxygen.
    Treshchalov A; Erikson H; Puust L; Tsarenko S; Saar R; Vanetsev A; Tammeveski K; Sildos I
    J Colloid Interface Sci; 2017 Apr; 491():358-366. PubMed ID: 28056445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous self-organization enables dielectrophoresis of small nanoparticles and formation of photoconductive microbridges.
    Jung SH; Chen C; Cha SH; Yeom B; Bahng JH; Srivastava S; Zhu J; Yang M; Liu S; Kotov NA
    J Am Chem Soc; 2011 Jul; 133(28):10688-91. PubMed ID: 21651294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field.
    Shimizu K; Nakamura H; Watano S
    Nanoscale; 2016 Jun; 8(23):11897-906. PubMed ID: 27241464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-Selective Electrophoretic Deposition of Gold Nanoparticles Mediated by Hydroquinone Oxidation.
    Allen SL; Zamborini FP
    Langmuir; 2019 Feb; 35(6):2137-2145. PubMed ID: 30649886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic characterization of superparamagnetic nanoparticle-aptamer conjugates: design of new highly specific probes for miniaturized molecular diagnostics.
    Girardot M; d'Orlyé F; Varenne A
    Anal Bioanal Chem; 2014 Feb; 406(4):1089-98. PubMed ID: 23925800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed self-assembly of colloidal model systems on charge-selective surfaces in external electric fields: theory and numerical analysis.
    Falk G
    J Phys Chem B; 2013 Feb; 117(6):1527-36. PubMed ID: 22913482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-Dependent Electrophoretic Deposition of Catalytic Gold Nanoparticles.
    Masitas RA; Allen SL; Zamborini FP
    J Am Chem Soc; 2016 Nov; 138(47):15295-15298. PubMed ID: 27806201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic Interpretation of PEGylated NP Structure with and without Peripheral Charge.
    Hill RJ; Li F; Doane TL; Burda C
    Langmuir; 2015 Sep; 31(37):10246-53. PubMed ID: 26332501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing Direct and Pulsed-Direct Current Electrophoretic Deposition on Neural Electrodes: Deposition Mechanism and Functional Influence.
    Ramesh V; Rehbock C; Giera B; Karnes JJ; Forien JB; Angelov SD; Schwabe K; Krauss JK; Barcikowski S
    Langmuir; 2021 Aug; ():. PubMed ID: 34357777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoretic ratcheting of spherical particles in well/channel microfluidic devices: Making particles move against the net field.
    Wang H; de Haan HW; Slater GW
    Electrophoresis; 2020 Apr; 41(7-8):621-629. PubMed ID: 31845347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation of a nanoparticle through a fluidic channel: the role of grafted polymers.
    Su J; Yang K; Guo H
    Nanotechnology; 2014 May; 25(18):185703. PubMed ID: 24736046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.