BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36716475)

  • 1. Classification of breast microcalcifications with GaAs photon-counting spectral mammography using an inverse problem approach.
    Ghammraoui B; Bader S; Thuering T; Glick SJ
    Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36716475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the feasibility of classifying breast microcalcifications using photon-counting spectral mammography: A simulation study.
    Ghammraoui B; Glick SJ
    Med Phys; 2017 Jun; 44(6):2304-2311. PubMed ID: 28332199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a GaAs photon-counting detector for mammography.
    Ghammraoui B; Gkoumas S; Glick SJ
    J Med Imaging (Bellingham); 2021 May; 8(3):033504. PubMed ID: 34179217
    [No Abstract]   [Full Text] [Related]  

  • 4. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT.
    Kalluri KS; Mahd M; Glick SJ
    Med Phys; 2013 Aug; 40(8):081923. PubMed ID: 23927337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive classification of breast microcalcifications using x-ray coherent scatter computed tomography.
    Ghammraoui B; Popescu LM
    Phys Med Biol; 2017 Feb; 62(3):1192-1207. PubMed ID: 28092637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical comparison and optimization of cadmium telluride and gallium arsenide photon-counting detectors for contrast-enhanced spectral mammography.
    Schaeffer C; Ghammraoui B; Taguchi K; Glick SJ
    J Med Imaging (Bellingham); 2023 Feb; 10(Suppl 2):S22406. PubMed ID: 37056579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.
    Cho HM; Ding H; Barber WC; Iwanczyk JS; Molloi S
    Med Phys; 2015 Jul; 42(7):4401-10. PubMed ID: 26133636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of breast microcalcifications using dual-energy mammography.
    Ghammraoui B; Makeev A; Zidan A; Alayoubi A; Glick SJ
    J Med Imaging (Bellingham); 2019 Jan; 6(1):013502. PubMed ID: 30891465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring CNN potential in discriminating benign and malignant calcifications in conventional and dual-energy FFDM: simulations and experimental observations.
    Makeev A; Rodal G; Ghammraoui B; Badal A; Glick SJ
    J Med Imaging (Bellingham); 2021 May; 8(3):033501. PubMed ID: 34002162
    [No Abstract]   [Full Text] [Related]  

  • 10. Quantitative contrast-enhanced spectral mammography based on photon-counting detectors: A feasibility study.
    Ding H; Molloi S
    Med Phys; 2017 Aug; 44(8):3939-3951. PubMed ID: 28432828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of microcalcifications for insertion into phantoms used to evaluate x-ray breast imaging systems.
    Ghammraoui B; Zidan A; Alayoubi A; Zidan A; Glick SJ
    Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34375962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of Al-equivalent thickness of just visible microcalcifications in full field digital mammograms.
    Carton AK; Bosmans H; Vandenbroucke D; Souverijns G; Van Ongeval C; Dragusin O; Marchal G
    Med Phys; 2004 Jul; 31(7):2165-76. PubMed ID: 15305471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of estimating volumetric breast density from mammographic x-ray spectra using a cadmium telluride photon-counting detector.
    Ghammraoui B; Badal A; Glick SJ
    Med Phys; 2018 Jun; ():. PubMed ID: 29862520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study.
    Ding H; Molloi S
    Phys Med Biol; 2012 Aug; 57(15):4719-38. PubMed ID: 22771941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-energy digital mammography: calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio.
    Kappadath SC; Shaw CC
    Med Phys; 2003 Jun; 30(6):1110-7. PubMed ID: 12852535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis.
    Shaheen E; Van Ongeval C; Zanca F; Cockmartin L; Marshall N; Jacobs J; Young KC; R Dance D; Bosmans H
    Med Phys; 2011 Dec; 38(12):6659-71. PubMed ID: 22149848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: visibility of simulated microcalcifications.
    Shen Y; Zhong Y; Lai CJ; Wang T; Shaw CC
    Med Phys; 2013 Oct; 40(10):101915. PubMed ID: 24089917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-CT imaging of multiple K-edge elements using GaAs and CdTe photon counting detectors.
    Allphin AJ; Clark DP; Thuering T; Bhandari P; Ghaghada KB; Badea CT
    Phys Med Biol; 2023 Apr; 68(8):. PubMed ID: 36963115
    [No Abstract]   [Full Text] [Related]  

  • 19. Polyhedral microcalcifications at mammography: histologic correlation with calcium oxalate.
    Frouge C; Meunier M; Guinebretière JM; Gilles R; Vanel D; Contesso G; Di Paola R; Bléry M
    Radiology; 1993 Mar; 186(3):681-4. PubMed ID: 8430173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcalcification detection using cone-beam CT mammography with a flat-panel imager.
    Gong X; Vedula AA; Glick SJ
    Phys Med Biol; 2004 Jun; 49(11):2183-95. PubMed ID: 15248571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.