BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36716475)

  • 21. Microcalcification detection using cone-beam CT mammography with a flat-panel imager.
    Gong X; Vedula AA; Glick SJ
    Phys Med Biol; 2004 Jun; 49(11):2183-95. PubMed ID: 15248571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DIMA enlargement mammography in microcalcifications: a prospective study with ROC analysis.
    Grunert JH; Barbey M; Berndt G; Borchert B; Farber A; Gmelin E; Ratmann R; Rautmann B
    Eur Radiol; 2001; 11(2):284-91. PubMed ID: 11218029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of photon-counting multislit breast tomosynthesis.
    Berggren K; Cederström B; Lundqvist M; Fredenberg E
    Med Phys; 2018 Feb; 45(2):549-560. PubMed ID: 29159881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microcalcification detectability in breast CT images using CNN observers.
    Lyu SH; Abbey CK; Hernandez AM; Boone JM
    Med Phys; 2024 Feb; 51(2):933-945. PubMed ID: 38154070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte-Carlo study of contrast-enhanced spectral mammography with cadmium telluride photon-counting x-ray detectors.
    Day JA; Tanguay J
    Med Phys; 2024 Apr; 51(4):2479-2498. PubMed ID: 37967277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Image-based spectral distortion correction for photon-counting x-ray detectors.
    Ding H; Molloi S
    Med Phys; 2012 Apr; 39(4):1864-76. PubMed ID: 22482608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contrast-enhanced breast MRI in patients with suspicious microcalcifications on mammography: results of a multicenter trial.
    Bazzocchi M; Zuiani C; Panizza P; Del Frate C; Soldano F; Isola M; Sardanelli F; Giuseppetti GM; Simonetti G; Lattanzio V; Del Maschio A
    AJR Am J Roentgenol; 2006 Jun; 186(6):1723-32. PubMed ID: 16714666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The relationship between the attenuation properties of breast microcalcifications and aluminum.
    Zanca F; Van Ongeval C; Marshall N; Meylaers T; Michielsen K; Marchal G; Bosmans H
    Phys Med Biol; 2010 Feb; 55(4):1057-68. PubMed ID: 20090185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discrimination analysis of breast calcifications using x-ray dark-field radiography.
    Rauch T; Rieger J; Pelzer G; Horn F; Erber R; Wunderle M; Emons J; Nabieva N; Fuhrich N; Michel T; Hartmann A; Fasching PA; Anton G
    Med Phys; 2020 Apr; 47(4):1813-1826. PubMed ID: 31977070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Technical feasibility proof for high-resolution low-dose photon-counting CT of the breast.
    Kalender WA; Kolditz D; Steiding C; Ruth V; Lück F; Rößler AC; Wenkel E
    Eur Radiol; 2017 Mar; 27(3):1081-1086. PubMed ID: 27306559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Breast Microcalcifications Using a New Ultrasound Image-Processing Technique.
    Machado P; Eisenbrey JR; Stanczak M; Cavanaugh BC; Zorn LM; Forsberg F
    J Ultrasound Med; 2019 Jul; 38(7):1733-1738. PubMed ID: 30426546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of ambient light and view box luminance on the detection of calcifications in mammography.
    Kimme-Smith C; Haus AG; DeBruhl N; Bassett LW
    AJR Am J Roentgenol; 1997 Mar; 168(3):775-8. PubMed ID: 9057533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of artificial neural networks (computer analysis) in the diagnosis of microcalcifications on mammography.
    Markopoulos C; Kouskos E; Koufopoulos K; Kyriakou V; Gogas J
    Eur J Radiol; 2001 Jul; 39(1):60-5. PubMed ID: 11439232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging.
    Cho HM; Barber WC; Ding H; Iwanczyk JS; Molloi S
    Med Phys; 2014 Sep; 41(9):091903. PubMed ID: 25186390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate.
    Warren LM; Mackenzie A; Dance DR; Young KC
    Phys Med Biol; 2013 Apr; 58(7):N103-13. PubMed ID: 23470559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of diagnostic performances in the evaluation of breast microcalcifications: synthetic mammography versus full-field digital mammography.
    Kilic P; Sendur HN; Gultekin S; Gultekin II; Cindil E; Cerit M
    Ir J Med Sci; 2022 Aug; 191(4):1891-1897. PubMed ID: 34472041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An improved method for simulating microcalcifications in digital mammograms.
    Zanca F; Chakraborty DP; Van Ongeval C; Jacobs J; Claus F; Marchal G; Bosmans H
    Med Phys; 2008 Sep; 35(9):4012-8. PubMed ID: 18841852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monochromatic mammography using scanning multilayer X-ray mirrors.
    Windt DL
    Rev Sci Instrum; 2018 Aug; 89(8):083702. PubMed ID: 30184654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of 2D Synthetic Mammography Versus Digital Mammography in the Detection of Microcalcifications at Screening.
    Dodelzon K; Simon K; Dou E; Levy AD; Michaels AY; Askin G; Katzen JT
    AJR Am J Roentgenol; 2020 Jun; 214(6):1436-1444. PubMed ID: 32255687
    [No Abstract]   [Full Text] [Related]  

  • 40. Using convolutional neural networks to discriminate between cysts and masses in Monte Carlo-simulated dual-energy mammography.
    Makeev A; Toner B; Qian M; Badal A; Glick SJ
    Med Phys; 2021 Aug; 48(8):4648-4655. PubMed ID: 34050965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.