These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 36716493)
1. Three-dimensional bioprinted BMSCs-laden highly adhesive artificial periosteum containing gelatin-dopamine and graphene oxide nanosheets promoting bone defect repair. Sun X; Yang J; Ma J; Wang T; Zhao X; Zhu D; Jin W; Zhang K; Sun X; Shen Y; Xie N; Yang F; Shang X; Li S; Zhou X; He C; Zhang D; Wang J Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36716493 [TBL] [Abstract][Full Text] [Related]
2. Composite bioink incorporating cell-laden liver decellularized extracellular matrix for bioprinting of scaffolds for bone tissue engineering. You P; Sun H; Chen H; Li C; Mao Y; Zhang T; Yang H; Dong H Biomater Adv; 2024 Dec; 165():214017. PubMed ID: 39236580 [TBL] [Abstract][Full Text] [Related]
3. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
4. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration. Wang W; Zhu Y; Liu Y; Chen B; Li M; Yuan C; Wang P Tissue Cell; 2024 Jun; 88():102418. PubMed ID: 38776731 [TBL] [Abstract][Full Text] [Related]
5. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888 [TBL] [Abstract][Full Text] [Related]
6. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301 [TBL] [Abstract][Full Text] [Related]
7. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
8. 3D bioprinted GelMA/GO composite induces osteoblastic differentiation. Jiang Y; Zhou D; Yang B J Biomater Appl; 2022 Sep; 37(3):527-537. PubMed ID: 35477321 [TBL] [Abstract][Full Text] [Related]
9. Bioprinting EphrinB2-Modified Dental Pulp Stem Cells with Enhanced Osteogenic Capacity for Alveolar Bone Engineering. Wang W; Zhu Y; Li J; Geng T; Jia J; Wang X; Yuan C; Wang P Tissue Eng Part A; 2023 Apr; 29(7-8):244-255. PubMed ID: 36606680 [TBL] [Abstract][Full Text] [Related]
10. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
11. Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects. Yu K; Huangfu H; Qin Q; Zhang Y; Gu X; Liu X; Zhang Y; Zhou Y ACS Appl Mater Interfaces; 2022 Oct; 14(41):47052-47065. PubMed ID: 36194837 [TBL] [Abstract][Full Text] [Related]
12. 3D bioprinting of mouse pre-osteoblasts and human MSCs using bioinks consisting of gelatin and decellularized bone particles. Kara Özenler A; Distler T; Akkineni AR; Tihminlioglu F; Gelinsky M; Boccaccini AR Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38394672 [TBL] [Abstract][Full Text] [Related]
14. Extrusion-Based 3D Bioprinting of Adhesive Tissue Engineering Scaffolds Using Hybrid Functionalized Hydrogel Bioinks. Chen S; Tomov ML; Ning L; Gil CJ; Hwang B; Bauser-Heaton H; Chen H; Serpooshan V Adv Biol (Weinh); 2023 Jul; 7(7):e2300124. PubMed ID: 37132122 [TBL] [Abstract][Full Text] [Related]
15. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs. Raveendran N; Ivanovski S; Vaquette C Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinted silk fibroin hydrogels for tissue engineering. Kim SH; Hong H; Ajiteru O; Sultan MT; Lee YJ; Lee JS; Lee OJ; Lee H; Park HS; Choi KY; Lee JS; Ju HW; Hong IS; Park CH Nat Protoc; 2021 Dec; 16(12):5484-5532. PubMed ID: 34716451 [TBL] [Abstract][Full Text] [Related]
17. Nanofibrous polyelectrolyte complex incorporated BSA-alginate composite bioink for 3D bioprinting of bone mimicking constructs. Chrungoo S; Bharadwaj T; Verma D Int J Biol Macromol; 2024 May; 266(Pt 1):131123. PubMed ID: 38537853 [TBL] [Abstract][Full Text] [Related]
18. Sustained release silicon from 3D bioprinting scaffold using silk/gelatin inks to promote osteogenesis. Yunsheng D; Hui X; Jie W; Tingting Y; Naiqi K; Jiaxing H; Wei C; Yufei L; Qiang Y; Shufang W Int J Biol Macromol; 2023 Apr; 234():123659. PubMed ID: 36796557 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus. Sun X; Ma Z; Zhao X; Jin W; Zhang C; Ma J; Qiang L; Wang W; Deng Q; Yang H; Zhao J; Liang Q; Zhou X; Li T; Wang J Bioact Mater; 2021 Mar; 6(3):757-769. PubMed ID: 33024897 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional bioprinted GelMA/GO composite hydrogel for stem cell osteogenic differentiation both in vitro and in vivo. Jiang Y; Zhou D; Jiang Y J Biomater Appl; 2024 May; 38(10):1087-1099. PubMed ID: 38561006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]