These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36716683)

  • 1. Oxidative damage to β
    Poliansky NB; Motyakin MV; Kasparov VV; Novikov IA; Muranov KO
    Biophys Chem; 2023 Mar; 294():106963. PubMed ID: 36716683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron autoxidation in Mops and Hepes buffers.
    Tadolini B
    Free Radic Res Commun; 1987; 4(3):149-60. PubMed ID: 3148493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide formation by reaction of peroxynitrite with HEPES and related tertiary amines. Implications for a general mechanism.
    Kirsch M; Lomonosova EE; Korth HG; Sustmann R; de Groot H
    J Biol Chem; 1998 May; 273(21):12716-24. PubMed ID: 9582295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative DNA damage induced by HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer in the presence of Au(III).
    Habib A; Tabata M
    J Inorg Biochem; 2004 Nov; 98(11):1696-702. PubMed ID: 15522397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radicals from "Good's" buffers.
    Grady JK; Chasteen ND; Harris DC
    Anal Biochem; 1988 Aug; 173(1):111-5. PubMed ID: 2847586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkable effect of mobile phase buffer on the SEC-ICP-AES derived Cu, Fe and Zn-metalloproteome pattern of rabbit blood plasma.
    Jahromi EZ; White W; Wu Q; Yamdagni R; Gailer J
    Metallomics; 2010 Jul; 2(7):460-8. PubMed ID: 21072345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of HEPES buffer with glass-ceramic scaffold: Can HEPES replace TRIS in SBF?
    Rohanová D; Horkavcová D; Paidere L; Boccaccini AR; Bozděchová P; Bezdička P
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):143-152. PubMed ID: 27889932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family.
    Bray RC; Adams B; Smith AT; Bennett B; Bailey S
    Biochemistry; 2000 Sep; 39(37):11258-69. PubMed ID: 10985771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of ionic and zwitterionic (Tris/BisTris and HEPES) buffers in studies on hemoglobin function.
    Weber RE
    J Appl Physiol (1985); 1992 Apr; 72(4):1611-5. PubMed ID: 1592755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu(II) complexation by "non-coordinating" N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES buffer).
    Sokołowska M; Bal W
    J Inorg Biochem; 2005 Aug; 99(8):1653-60. PubMed ID: 15993944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha-crystallin can act as a chaperone under conditions of oxidative stress.
    Wang K; Spector A
    Invest Ophthalmol Vis Sci; 1995 Feb; 36(2):311-21. PubMed ID: 7843902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of oxidized betaB3-crystallin peptide on lens betaL-crystallin: interaction with betaB2-crystallin.
    Udupa EG; Sharma KK
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2514-21. PubMed ID: 15980243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of reactive oxygen species and DNA strand breakage during interaction of chromium (III) and hydrogen peroxide in vitro: evidence for a chromium (III)-mediated Fenton-like reaction.
    Tsou TC; Yang JL
    Chem Biol Interact; 1996 Dec; 102(3):133-53. PubMed ID: 9021167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro.
    Stearns DM; Kennedy LJ; Courtney KD; Giangrande PH; Phieffer LS; Wetterhahn KE
    Biochemistry; 1995 Jan; 34(3):910-9. PubMed ID: 7827049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two pathways of iron uptake in bovine spleen apoferritin dependent on iron concentration.
    Orino K; Kamura S; Natsuhori M; Yamamoto S; Watanabe K
    Biometals; 2002 Mar; 15(1):59-63. PubMed ID: 11860023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effect of buffer on the spin trapping of nitric oxide by iron chelates.
    Porasuphatana S; Weaver J; Budzichowski TA; Tsai P; Rosen GM
    Anal Biochem; 2001 Nov; 298(1):50-6. PubMed ID: 11673894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assay Development for Metal-Dependent Enzymes-Influence of Reaction Buffers on Activities and Kinetic Characteristics.
    Forero N; Liu C; Sabbah SG; Loewen MC; Yang TC
    ACS Omega; 2023 Oct; 8(43):40119-40127. PubMed ID: 37929113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of oxidative DNA degradation by histidine: the role of stereochemical parameters.
    Marrot L; Giacomoni PU
    Mutat Res; 1992 Mar; 275(2):69-79. PubMed ID: 1379340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of hydroxyl radicals with tris (hydroxymethyl) aminomethane and Good's buffers containing hydroxymethyl or hydroxyethyl residues produce formaldehyde.
    Shiraishi H; Kataoka M; Morita Y; Umemoto J
    Free Radic Res Commun; 1993; 19(5):315-21. PubMed ID: 8314112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.