BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36716815)

  • 1. Chlamydia psittaci inclusion membrane protein CPSIT_0842 induces macrophage apoptosis through MAPK/ERK-mediated autophagy.
    Huang Y; Li S; He S; Li Y; He Q; Wu Y
    Int J Biochem Cell Biol; 2023 Apr; 157():106376. PubMed ID: 36716815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TLR2 mediates autophagy through ERK signaling pathway in Chlamydia psittaci CPSIT_p7 protein-stimulated RAW264.7 cells.
    Luo Y; Sun Z; Chen Q; Xiao J; Yan X; Li Y; Wu Y
    Microbiol Immunol; 2023 Nov; 67(11):469-479. PubMed ID: 37615441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia psittaci hypothetical inclusion membrane protein CPSIT_0842 evokes a pro-inflammatory response in monocytes via TLR2/TLR4 signaling pathways.
    Xiao J; He J; He Z; Wang C; Li Y; Yan X; Chen Y; Sun Z; Liu J; Liang M; Wu Y
    Vet Microbiol; 2023 May; 280():109693. PubMed ID: 36889151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia psittaci plasmid-encoded CPSIT_P7 induces macrophage polarization to enhance the antibacterial response through TLR4-mediated MAPK and NF-κB pathways.
    He S; Wang C; Huang Y; Lu S; Li W; Ding N; Chen C; Wu Y
    Biochim Biophys Acta Mol Cell Res; 2022 Oct; 1869(10):119324. PubMed ID: 35809864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization and characterization of two putative TMH family proteins in Chlamydia psittaci.
    Wu H; Wang C; Jiang C; Xie Y; Liu L; Song Y; Ma X; Wu Y
    Microbiol Res; 2016 Feb; 183():19-25. PubMed ID: 26805615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hypothetical Inclusion Membrane Protein CPSIT_0846 Regulates Mitochondrial-Mediated Host Cell Apoptosis
    Tang T; Wu H; Chen X; Chen L; Liu L; Li Z; Bai Q; Chen Y; Chen L
    Front Cell Infect Microbiol; 2021; 11():607422. PubMed ID: 33747977
    [No Abstract]   [Full Text] [Related]  

  • 7. Recombinant protein CPSIT_0846 induces protective immunity against Chlamydia psittaci infection in BALB/c mice.
    Ran O; Liang M; Yu J; Yu M; Song Y; Yimou W
    Pathog Dis; 2017 Apr; 75(3):. PubMed ID: 28204474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The
    He Z; Xiao J; Wang J; Lu S; Zheng K; Yu M; Liu J; Wang C; Ding N; Liang M; Wu Y
    Front Immunol; 2021; 12():694573. PubMed ID: 34484191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunization with Chlamydia psittaci plasmid-encoded protein CPSIT_p7 induces partial protective immunity against chlamydia lung infection in mice.
    Tan Y; Li Y; Zhang Y; Yu J; Wen Y; Wang C; Xu M; Chen Q; Lu C; Wu Y
    Immunol Res; 2018 Aug; 66(4):471-479. PubMed ID: 30097797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective immunity induced by recombinant protein CPSIT_p8 of Chlamydia psittaci.
    Liang M; Wen Y; Ran O; Chen L; Wang C; Li L; Xie Y; Zhang Y; Chen C; Wu Y
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6385-6393. PubMed ID: 27052378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective Immunity against
    Wang C; Jin Y; Wang J; Zheng K; Lei A; Lu C; Wang S; Wu Y
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108176
    [No Abstract]   [Full Text] [Related]  

  • 12. Localization and characterization of a putative cysteine desulfurase in Chlamydia psittaci.
    Wen Y; Chen Y; Li L; Xu M; Tan Y; Li Y; Wang C; Chen Q; Kuang X; Wu Y
    J Cell Biochem; 2019 Mar; 120(3):4409-4422. PubMed ID: 30260037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A recombinant multi-epitope peptide vaccine based on MOMP and CPSIT_p6 protein protects against Chlamydia psittaci lung infection.
    Li Y; Zheng K; Tan Y; Wen Y; Wang C; Chen Q; Yu J; Xu M; Tan M; Wu Y
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):941-952. PubMed ID: 30467705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and comparison of differentially expressed genes involved in Chlamydia psittaci persistent infection in vitro and in vivo.
    Chen Y; Wang C; Mi J; Zhou Z; Wang J; Tang M; Yu J; Liu A; Wu Y
    Vet Microbiol; 2021 Apr; 255():108960. PubMed ID: 33667981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorphic Membrane Protein 17G of
    Li X; Zuo Z; Wang Y; Hegemann JH; He C
    Front Immunol; 2021; 12():818487. PubMed ID: 35173712
    [No Abstract]   [Full Text] [Related]  

  • 16. Chlamydia-host cell interaction not only from a bird's eye view: some lessons from Chlamydia psittaci.
    Radomski N; Einenkel R; Müller A; Knittler MR
    FEBS Lett; 2016 Nov; 590(21):3920-3940. PubMed ID: 27397851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydia psittaci: update on an underestimated zoonotic agent.
    Knittler MR; Sachse K
    Pathog Dis; 2015 Feb; 73(1):1-15. PubMed ID: 25853998
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Chen Q; Li Y; Yan X; Sun Z; Wang C; Liu S; Xiao J; Lu C; Wu Y
    Front Microbiol; 2020; 11():578009. PubMed ID: 33343522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Type III secretory protein SINC of
    Zeng X; Chen L; Zhou P; Tang T; Chen X; Hu D; Wang C; Chen L
    Nan Fang Yi Ke Da Xue Xue Bao; 2023 Feb; 43(2):294-299. PubMed ID: 36946051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physcion, a novel anthraquinone derivative against Chlamydia psittaci infection.
    Liu X; Hu H; Liu J; Chen J; Chu J; Cheng H
    Vet Microbiol; 2023 Apr; 279():109664. PubMed ID: 36716634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.