These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 36717018)
1. VDAC genes down-regulation in brain samples of individuals with schizophrenia is revealed by a systematic meta-analysis. Segev S; Yitzhaky A; Ben Shachar D; Hertzberg L Neurosci Res; 2023 Jul; 192():83-92. PubMed ID: 36717018 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive Gene Expression Analysis Detects Global Reduction of Proteasome Subunits in Schizophrenia. Hertzberg L; Maggio N; Muler I; Yitzhaky A; Majer M; Haroutunian V; Zuk O; Katsel P; Domany E; Weiser M Schizophr Bull; 2021 Apr; 47(3):785-795. PubMed ID: 33141894 [TBL] [Abstract][Full Text] [Related]
3. Is the secret of VDAC Isoforms in their gene regulation? Characterization of human Zinghirino F; Pappalardo XG; Messina A; Guarino F; De Pinto V Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036380 [TBL] [Abstract][Full Text] [Related]
4. Glutamate 73 Promotes Anti-arrhythmic Effects of Voltage-Dependent Anion Channel Through Regulation of Mitochondrial Ca Shimizu H; Huber S; Langenbacher AD; Crisman L; Huang J; Wang K; Wilting F; Gudermann T; Schredelseker J; Chen JN Front Physiol; 2021; 12():724828. PubMed ID: 34483974 [TBL] [Abstract][Full Text] [Related]
5. Intracellular localization and isoform expression of the voltage-dependent anion channel (VDAC) in normal and dystrophic skeletal muscle. Massa R; Marliera LN; Martorana A; Cicconi S; Pierucci D; Giacomini P; De Pinto V; Castellani L J Muscle Res Cell Motil; 2000; 21(5):433-42. PubMed ID: 11129434 [TBL] [Abstract][Full Text] [Related]
6. Meta-analysis of brain samples of individuals with schizophrenia detects down-regulation of multiple ATP synthase encoding genes in both females and males. Katz Shroitman N; Yitzhaky A; Ben Shachar D; Gurwitz D; Hertzberg L J Psychiatr Res; 2023 Feb; 158():350-359. PubMed ID: 36640659 [TBL] [Abstract][Full Text] [Related]
7. Protein-protein interaction networks as a new perspective to evaluate distinct functional roles of voltage-dependent anion channel isoforms. Caterino M; Ruoppolo M; Mandola A; Costanzo M; Orrù S; Imperlini E Mol Biosyst; 2017 Nov; 13(12):2466-2476. PubMed ID: 29028058 [TBL] [Abstract][Full Text] [Related]
8. Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins. Sabirov RZ; Sheiko T; Liu H; Deng D; Okada Y; Craigen WJ J Biol Chem; 2006 Jan; 281(4):1897-904. PubMed ID: 16291750 [TBL] [Abstract][Full Text] [Related]
9. Mouse VDAC isoforms expressed in yeast: channel properties and their roles in mitochondrial outer membrane permeability. Xu X; Decker W; Sampson MJ; Craigen WJ; Colombini M J Membr Biol; 1999 Jul; 170(2):89-102. PubMed ID: 10430654 [TBL] [Abstract][Full Text] [Related]
10. Relationship between expression of voltage-dependent anion channel (VDAC) isoforms and type of hexokinase binding sites on brain mitochondria. Poleti MD; Tesch AC; Crepaldi CR; Souza GH; Eberlin MN; de Cerqueira César M J Mol Neurosci; 2010 May; 41(1):48-54. PubMed ID: 19688190 [TBL] [Abstract][Full Text] [Related]
12. VDAC Genes Expression and Regulation in Mammals. Zinghirino F; Pappalardo XG; Messina A; Nicosia G; De Pinto V; Guarino F Front Physiol; 2021; 12():708695. PubMed ID: 34421651 [TBL] [Abstract][Full Text] [Related]
13. VDAC1, having a shorter N-terminus than VDAC2 but showing the same migration in an SDS-polyacrylamide gel, is the predominant form expressed in mitochondria of various tissues. Yamamoto T; Yamada A; Watanabe M; Yoshimura Y; Yamazaki N; Yoshimura Y; Yamauchi T; Kataoka M; Nagata T; Terada H; Shinohara Y J Proteome Res; 2006 Dec; 5(12):3336-44. PubMed ID: 17137335 [TBL] [Abstract][Full Text] [Related]
14. All three isoforms of the voltage-dependent anion channel (VDAC1, VDAC2, and VDAC3) are present in mitochondria from bovine, rabbit, and rat brain. Cesar Mde C; Wilson JE Arch Biochem Biophys; 2004 Feb; 422(2):191-6. PubMed ID: 14759607 [TBL] [Abstract][Full Text] [Related]
15. Genetic strategies for dissecting mammalian and Drosophila voltage-dependent anion channel functions. Craigen WJ; Graham BH J Bioenerg Biomembr; 2008 Jun; 40(3):207-12. PubMed ID: 18622693 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial voltage-dependent anion channel is involved in dopamine-induced apoptosis. Premkumar A; Simantov R J Neurochem; 2002 Jul; 82(2):345-52. PubMed ID: 12124435 [TBL] [Abstract][Full Text] [Related]
17. Multiple genes encoding mitochondrial ribosomes are downregulated in brain and blood samples of individuals with schizophrenia. Bartal G; Yitzhaky A; Segev A; Hertzberg L World J Biol Psychiatry; 2023 Nov; 24(9):829-837. PubMed ID: 37158323 [TBL] [Abstract][Full Text] [Related]
18. Voltage-dependent anion channel proteins in synaptosomes of the torpedo electric organ: immunolocalization, purification, and characterization. Shafir I; Feng W; Shoshan-Barmataz V J Bioenerg Biomembr; 1998 Oct; 30(5):499-510. PubMed ID: 9932652 [TBL] [Abstract][Full Text] [Related]
19. An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake. Huang H; Hu X; Eno CO; Zhao G; Li C; White C J Biol Chem; 2013 Jul; 288(27):19870-81. PubMed ID: 23720737 [TBL] [Abstract][Full Text] [Related]
20. α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport. Rosencrans WM; Aguilella VM; Rostovtseva TK; Bezrukov SM Cell Calcium; 2021 May; 95():102355. PubMed ID: 33578201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]