These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36717516)

  • 1. NAD
    Lee JH; Kang HI; Kim S; Ahn YB; Kim H; Hong JK; Baik JY
    Biotechnol J; 2023 Apr; 18(4):e2200570. PubMed ID: 36717516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the effect of temperature downshift on CHO cell growth, antibody titer and product quality by intracellular metabolite profiling and in vivo monitoring of redox state.
    Zhu Z; Chen X; Li W; Zhuang Y; Zhao Y; Wang G
    Biotechnol Prog; 2023; 39(4):e3352. PubMed ID: 37141532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism.
    Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S
    Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process.
    Luo J; Vijayasankaran N; Autsen J; Santuray R; Hudson T; Amanullah A; Li F
    Biotechnol Bioeng; 2012 Jan; 109(1):146-56. PubMed ID: 21964570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cottonseed hydrolysate supplementation alters metabolic and proteomics responses in Chinese hamster ovary cell cultures.
    Dhara VG; Kumar S; DeVine L; Naik HM; Cole RN; More AJ; Lau EC; Betenbaugh MJ
    Biotechnol J; 2023 Jun; 18(6):e2200243. PubMed ID: 36892270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feeding tricarboxylic acid cycle intermediates improves lactate consumption and antibody production in Chinese hamster ovary cell cultures.
    Zhang X; Jiang R; Lin H; Xu S
    Biotechnol Prog; 2020 Jul; 36(4):e2975. PubMed ID: 32012447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect.
    Buchsteiner M; Quek LE; Gray P; Nielsen LK
    Biotechnol Bioeng; 2018 Sep; 115(9):2315-2327. PubMed ID: 29704441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of iron addition on mAb productivity and oxidative stress in Chinese hamster ovary culture.
    Graham RJ; Mohammad A; Liang G; Fu Q; Kuang B; Polanco A; Lee YS; Marcus RK; Yoon S
    Biotechnol Prog; 2021 Sep; 37(5):e3181. PubMed ID: 34106525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity.
    Ugamraj HS; Dang K; Ouisse LH; Buelow B; Chini EN; Castello G; Allison J; Clarke SC; Davison LM; Buelow R; Deng R; Iyer S; Schellenberger U; Manika SN; Bijpuria S; Musnier A; Poupon A; Cuturi MC; van Schooten W; Dalvi P
    MAbs; 2022; 14(1):2095949. PubMed ID: 35867844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.
    Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR
    Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient supplementation strategy improves cell concentration and longevity, monoclonal antibody production and lactate metabolism of Chinese hamster ovary cells.
    Pérez-Rodriguez S; Ramírez-Lira MJ; Trujillo-Roldán MA; Valdez-Cruz NA
    Bioengineered; 2020 Dec; 11(1):463-471. PubMed ID: 32223359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetate accumulation and regulation by process parameters control in Chinese hamster ovary cell culture.
    Zhou Y; Han H; Zhang L; Huang H; Sun R; Zhou H; Zhou W
    Biotechnol Prog; 2023 Jan; 39(1):e3303. PubMed ID: 36168987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms driving the lactate switch in Chinese hamster ovary cells.
    Hartley F; Walker T; Chung V; Morten K
    Biotechnol Bioeng; 2018 Aug; 115(8):1890-1903. PubMed ID: 29603726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases.
    Zhou M; Crawford Y; Ng D; Tung J; Pynn AF; Meier A; Yuk IH; Vijayasankaran N; Leach K; Joly J; Snedecor B; Shen A
    J Biotechnol; 2011 Apr; 153(1-2):27-34. PubMed ID: 21392546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of antibody production rate with glucose and lactate metabolism in Chinese hamster ovary cells.
    Chen F; Ye Z; Zhao L; Liu X; Fan L; Tan WS
    Biotechnol Lett; 2012 Mar; 34(3):425-32. PubMed ID: 22105551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells.
    Mulukutla BC; Yongky A; Grimm S; Daoutidis P; Hu WS
    PLoS One; 2015; 10(3):e0121561. PubMed ID: 25806512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyruvate Kinase Muscle-1 Expression Appears to Drive Lactogenic Behavior in CHO Cell Lines, Triggering Lower Viability and Productivity: A Case Study.
    Tang D; Subramanian J; Haley B; Baker J; Luo L; Hsu W; Liu P; Sandoval W; Laird MW; Snedecor B; Shiratori M; Misaghi S
    Biotechnol J; 2019 Apr; 14(4):e1800332. PubMed ID: 30179303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.
    Nargund S; Qiu J; Goudar CT
    Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial engineering of ldh-a and bcl-2 for reducing lactate production and improving cell growth in dihydrofolate reductase-deficient Chinese hamster ovary cells.
    Jeon MK; Yu DY; Lee GM
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):779-90. PubMed ID: 21792592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.