These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36717593)

  • 1. Target templates and the time course of distractor location learning.
    Hanne AA; Tünnermann J; Schubö A
    Sci Rep; 2023 Jan; 13(1):1672. PubMed ID: 36717593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial suppression due to statistical regularities in a visual detection task.
    van Moorselaar D; Theeuwes J
    Atten Percept Psychophys; 2022 Feb; 84(2):450-458. PubMed ID: 34773244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical regularities modulate attentional capture independent of search strategy.
    Wang B; Theeuwes J
    Atten Percept Psychophys; 2018 Oct; 80(7):1763-1774. PubMed ID: 29968080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distractor suppression leads to reduced flanker interference.
    Ivanov Y; Theeuwes J
    Atten Percept Psychophys; 2021 Feb; 83(2):624-636. PubMed ID: 33269439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture.
    Failing M; Theeuwes J
    Psychon Bull Rev; 2020 Feb; 27(1):86-95. PubMed ID: 31848910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-capture processes contribute to statistical learning of distractor locations in visual search.
    Sauter M; Hanning NM; Liesefeld HR; Müller HJ
    Cortex; 2021 Feb; 135():108-126. PubMed ID: 33360756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of a salient distractor protects the processing of target features.
    Narhi-Martinez W; Dube B; Chen J; Leber AB; Golomb JD
    Psychon Bull Rev; 2024 Feb; 31(1):223-233. PubMed ID: 37528277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical regularities bias overt attention.
    Wang B; Samara I; Theeuwes J
    Atten Percept Psychophys; 2019 Aug; 81(6):1813-1821. PubMed ID: 30919311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Habituation to abrupt-onset distractors with different spatial occurrence probability.
    Valsecchi M; Turatto M
    Atten Percept Psychophys; 2023 Apr; 85(3):649-666. PubMed ID: 35851440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Region-based shielding of visual search from salient distractors: Target detection is impaired with same- but not different-dimension distractors.
    Sauter M; Liesefeld HR; Zehetleitner M; Müller HJ
    Atten Percept Psychophys; 2018 Apr; 80(3):622-642. PubMed ID: 29299850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning to suppress salient distractors in the target dimension: Region-based inhibition is persistent and transfers to distractors in a nontarget dimension.
    Sauter M; Liesefeld HR; Müller HJ
    J Exp Psychol Learn Mem Cogn; 2019 Nov; 45(11):2080-2097. PubMed ID: 30688477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probability cueing of singleton-distractor locations in visual search: Priority-map- versus dimension-based inhibition?
    Zhang B; Allenmark F; Liesefeld HR; Shi Z; Müller HJ
    J Exp Psychol Hum Percept Perform; 2019 Sep; 45(9):1146-1163. PubMed ID: 31144860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distractor rejection in visual search breaks down with more than a single distractor feature.
    Kerzel D; Barras C
    J Exp Psychol Hum Percept Perform; 2016 May; 42(5):648-57. PubMed ID: 26594882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oculomotor capture by search-irrelevant features in visual working memory: on the crucial role of target-distractor similarity.
    Foerster RM; Schneider WX
    Atten Percept Psychophys; 2020 Jul; 82(5):2379-2392. PubMed ID: 32166644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning What Is Irrelevant or Relevant: Expectations Facilitate Distractor Inhibition and Target Facilitation through Distinct Neural Mechanisms.
    van Moorselaar D; Slagter HA
    J Neurosci; 2019 Aug; 39(35):6953-6967. PubMed ID: 31270162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target uncertainty does not lead to greater singleton distractor interference when target shapes are not interchangeable with nontarget shapes.
    Berry JH
    Vision Res; 2013 Mar; 80():31-40. PubMed ID: 23385060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired selection of a previously ignored singleton: Evidence for salience map plastic changes.
    Turatto M; Valsecchi M
    Q J Exp Psychol (Hove); 2022 Jun; 75(6):1114-1120. PubMed ID: 34498985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural mechanisms underlying distractor inhibition on the basis of feature and/or spatial expectations.
    van Moorselaar D; Daneshtalab N; Slagter HA
    Cortex; 2021 Apr; 137():232-250. PubMed ID: 33640854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A saliency-specific and dimension-independent mechanism of distractor suppression.
    Gong D; Theeuwes J
    Atten Percept Psychophys; 2021 Jan; 83(1):292-307. PubMed ID: 33025466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature-based statistical regularities of distractors modulate attentional capture.
    Stilwell BT; Bahle B; Vecera SP
    J Exp Psychol Hum Percept Perform; 2019 Mar; 45(3):419-433. PubMed ID: 30802131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.