These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36717683)

  • 1. Low-cost and prototype-friendly method for biocompatible encapsulation of implantable electronics with epoxy overmolding, hermetic feedthroughs and P3HT coating.
    Novák M; Rosina J; Bendová H; Kejlová K; Vlková A; Rucki M; Svobodová L; Gürlich R; Hajer J
    Sci Rep; 2023 Jan; 13(1):1644. PubMed ID: 36717683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-hermetic encapsulation for implantable electronic devices based on epoxy.
    Boeser F; Ordonez JS; Schuettler M; Stieglitz T; Plachta DT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():809-12. PubMed ID: 26736385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epoxy casting used as nonhermetic encapsulation technique for implantable electronic devices.
    Boeser F; Lang BG; Stieglitz T; Plachta DT
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1938-1941. PubMed ID: 28268707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicone encapsulation of thin-film SiO
    Lamont C; Grego T; Nanbakhsh K; Shah Idil A; Giagka V; Vanhoestenberghe A; Cogan S; Donaldson N
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33752188
    [No Abstract]   [Full Text] [Related]  

  • 5. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys.
    Lichter SG; Escudié MC; Stacey AD; Ganesan K; Fox K; Ahnood A; Apollo NV; Kua DC; Lee AZ; McGowan C; Saunders AL; Burns O; Nayagam DA; Williams RA; Garrett DJ; Meffin H; Prawer S
    Biomaterials; 2015; 53():464-74. PubMed ID: 25890743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chip-scale hermetic feedthroughs for implantable bionics.
    Guenther T; Dodds CW; Lovell NH; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6717-20. PubMed ID: 22255880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microelectronic retinal prosthesis: III. a new method for fabrication of high-density hermetic feedthroughs.
    Suaning GJ; Lavoie P; Forrester J; Armitage T; Lovell NH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1638-41. PubMed ID: 17946914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser fabrication of electrical feedthroughs in polymer encapsulations for active implantable medical devices.
    Gough Z; Chaminade C; Barclay-Monteith P; Kallinen A; Lei W; Ganesan R; Grace J; McKenzie DR
    Med Eng Phys; 2017 Apr; 42():105-110. PubMed ID: 28159450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of ionic permeability and water vapor transmission rate of polymers used for implantable electronics.
    Kirsten S; Schubert M; Uhlemann J; Wolter KJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6561-4. PubMed ID: 25571499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced biocompatibility for SAOS-2 osteosarcoma cells by surface coating with hydrophobic epoxy resins.
    Geckeler K; Wacker R; Martini F; Hack A; Aicher W
    Cell Physiol Biochem; 2003; 13(3):155-64. PubMed ID: 12876386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epoxy moulding system for the encapsulation of microelectronic devices suitable for implantation.
    Lovely DF; Olive MB; Scott RN
    Med Biol Eng Comput; 1986 Mar; 24(2):206-8. PubMed ID: 3713284
    [No Abstract]   [Full Text] [Related]  

  • 12. Fabrication of UV epoxy resin masters for the replication of PDMS-based microchips.
    Pan YJ; Yang RJ
    Biomed Microdevices; 2007 Aug; 9(4):555-63. PubMed ID: 17508287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for the removal of epoxy coating from waste printed circuit board.
    Senophiyah-Mary J; Loganath R; Meenambal T
    Waste Manag Res; 2018 Jul; 36(7):645-652. PubMed ID: 29925298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and test of a hermetic miniature implant package with 360 electrical feedthroughs.
    Schuettler M; Ordonez JS; Silva Santisteban T; Schatz A; Wilde J; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1585-8. PubMed ID: 21096387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices.
    Vanhoestenberghe A; Donaldson N
    J Neural Eng; 2013 Jun; 10(3):031002. PubMed ID: 23685410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials and designs for wirelessly powered implantable light-emitting systems.
    Kim RH; Tao H; Kim TI; Zhang Y; Kim S; Panilaitis B; Yang M; Kim DH; Jung YH; Kim BH; Li Y; Huang Y; Omenetto FG; Rogers JA
    Small; 2012 Sep; 8(18):2812-8. PubMed ID: 22744861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Resorbable Elastomeric Circuit Boards for Implantable Medical Devices.
    Turner BL; Ramesh S; Menegatti S; Daniele M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4860-4863. PubMed ID: 36086659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronically Implantable Package Based on Alumina Ceramics and Titanium with High-density Feedthroughs for Medical Implants.
    Yang H; Wu T; Zhao S; Xiong S; Peng B; Humayun MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3382-3385. PubMed ID: 30441113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New standard specification for implantable epoxy electronic encapsulants.
    Artif Organs; 1979 Nov; 3(4):387-90. PubMed ID: 533434
    [No Abstract]   [Full Text] [Related]  

  • 20. Extended Barrier Lifetime of Partially Cracked Organic/Inorganic Multilayers for Compliant Implantable Electronics.
    Kim K; Van Gompel M; Wu K; Schiavone G; Carron J; Bourgeois F; Lacour SP; Leterrier Y
    Small; 2021 Oct; 17(40):e2103039. PubMed ID: 34477315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.