These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Synthesis and Secretion of Isoflavones by Field-Grown Soybean. Sugiyama A; Yamazaki Y; Hamamoto S; Takase H; Yazaki K Plant Cell Physiol; 2017 Sep; 58(9):1594-1600. PubMed ID: 28637253 [TBL] [Abstract][Full Text] [Related]
3. Developmental and nutritional regulation of isoflavone secretion from soybean roots. Sugiyama A; Yamazaki Y; Yamashita K; Takahashi S; Nakayama T; Yazaki K Biosci Biotechnol Biochem; 2016; 80(1):89-94. PubMed ID: 26168358 [TBL] [Abstract][Full Text] [Related]
4. Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones. Kondo T; Sibponkrung S; Hironao KY; Tittabutr P; Boonkerd N; Ishikawa S; Ashida H; Teaumroong N; Yoshida KI J Gen Appl Microbiol; 2023 Dec; 69(3):175-183. PubMed ID: 36858546 [TBL] [Abstract][Full Text] [Related]
5. An isoflavone conjugate-hydrolyzing beta-glucosidase from the roots of soybean (Glycine max) seedlings: purification, gene cloning, phylogenetics, and cellular localization. Suzuki H; Takahashi S; Watanabe R; Fukushima Y; Fujita N; Noguchi A; Yokoyama R; Nishitani K; Nishino T; Nakayama T J Biol Chem; 2006 Oct; 281(40):30251-9. PubMed ID: 16891302 [TBL] [Abstract][Full Text] [Related]
6. A novel soybean (Glycine max) gene encoding a family 3 β-glucosidase has high isoflavone 7-O-glucoside-hydrolyzing activity in transgenic rice. Hsu CC; Wu TM; Hsu YT; Wu CW; Hong CY; Su NW J Agric Food Chem; 2015 Jan; 63(3):921-8. PubMed ID: 25569564 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a novel isoflavone glycoside-hydrolyzing β-glucosidase from mangrove soil metagenomic library. Mai Z; Wang L; Zeng Q Biochem Biophys Res Commun; 2021 Sep; 569():61-65. PubMed ID: 34229124 [TBL] [Abstract][Full Text] [Related]
8. Carbohydrate-binding module assisted purification and immobilization of β-glucosidase onto cellulose and application in hydrolysis of soybean isoflavone glycosides. Chang F; Xue S; Xie X; Fang W; Fang Z; Xiao Y J Biosci Bioeng; 2018 Feb; 125(2):185-191. PubMed ID: 29046264 [TBL] [Abstract][Full Text] [Related]
9. Effect of pulsed electric field on soybean isoflavone glycosides hydrolysis by β-glucosidase: Investigation on enzyme characteristics and assisted reaction. Lu C; Li F; Yan X; Mao S; Zhang T Food Chem; 2022 Jun; 378():132032. PubMed ID: 35033710 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Li G; Jiang Y; Fan XJ; Liu YH Bioresour Technol; 2012 Nov; 123():15-22. PubMed ID: 22940294 [TBL] [Abstract][Full Text] [Related]
11. Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides. Pei X; Zhao J; Cai P; Sun W; Ren J; Wu Q; Zhang S; Tian C Protein Expr Purif; 2016 Mar; 119():75-84. PubMed ID: 26596358 [TBL] [Abstract][Full Text] [Related]
12. An isoflavone catabolism gene cluster underlying interkingdom interactions in the soybean rhizosphere. Aoki N; Shimasaki T; Yazaki W; Sato T; Nakayasu M; Ando A; Kishino S; Ogawa J; Masuda S; Shibata A; Shirasu K; Yazaki K; Sugiyama A ISME Commun; 2024 Jan; 4(1):ycae052. PubMed ID: 38707841 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization of a highly-active thermophilic β-glucosidase from Neosartorya fischeri P1 and its application in the hydrolysis of soybean isoflavone glycosides. Yang X; Ma R; Shi P; Huang H; Bai Y; Wang Y; Yang P; Fan Y; Yao B PLoS One; 2014; 9(9):e106785. PubMed ID: 25188254 [TBL] [Abstract][Full Text] [Related]
15. Purification and characterization of an isoflavones conjugate hydrolyzing β-glucosidase (ICHG) from Asati V; Sharma PK Biochem Biophys Rep; 2019 Dec; 20():100669. PubMed ID: 31453384 [TBL] [Abstract][Full Text] [Related]
16. Diurnal metabolic regulation of isoflavones and soyasaponins in soybean roots. Matsuda H; Nakayasu M; Aoki Y; Yamazaki S; Nagano AJ; Yazaki K; Sugiyama A Plant Direct; 2020 Nov; 4(11):e00286. PubMed ID: 33241173 [TBL] [Abstract][Full Text] [Related]
17. Constitutive overexpression of GsIMaT2 gene from wild soybean enhances rhizobia interaction and increase nodulation in soybean (Glycine max). Darwish DBE; Ali M; Abdelkawy AM; Zayed M; Alatawy M; Nagah A BMC Plant Biol; 2022 Sep; 22(1):431. PubMed ID: 36076165 [TBL] [Abstract][Full Text] [Related]
18. Enhanced biotransformation of soybean isoflavone from glycosides to aglycones using solid-state fermentation of soybean with effective microorganisms (EM) strains. Zhang H; Yu H J Food Biochem; 2019 Apr; 43(4):e12804. PubMed ID: 31353590 [TBL] [Abstract][Full Text] [Related]
19. Hydrolysis of soy isoflavone glycosides by recombinant beta-glucosidase from hyperthermophile Thermotoga maritima. Xue Y; Yu J; Song X J Ind Microbiol Biotechnol; 2009 Nov; 36(11):1401-8. PubMed ID: 19693552 [TBL] [Abstract][Full Text] [Related]
20. Improve ethanol tolerance of β-glucosidase Bgl1A by semi-rational engineering for the hydrolysis of soybean isoflavone glycosides. Fang W; Yang Y; Zhang X; Yin Q; Zhang X; Wang X; Fang Z; Yazhong X J Biotechnol; 2016 Jun; 227():64-71. PubMed ID: 27084057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]