These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 36718708)
21. Automatic Landmark Annotation and Measurement of 3D Mandibular Morphology Using Non-Rigid Registration: A Preliminary Exploration and Accuracy Assessment. Chen Z; Lei B; Li B; Ma H; Zhong Y Cleft Palate Craniofac J; 2024 Oct; ():10556656241288204. PubMed ID: 39360344 [TBL] [Abstract][Full Text] [Related]
22. Characterizing mandibular growth using three-dimensional imaging techniques and anatomic landmarks. Kelly MP; Vorperian HK; Wang Y; Tillman KK; Werner HM; Chung MK; Gentry LR Arch Oral Biol; 2017 May; 77():27-38. PubMed ID: 28161602 [TBL] [Abstract][Full Text] [Related]
23. Automatic landmark annotation in 3D surface scans of skulls: Methodological proposal and reliability study. Bermejo E; Taniguchi K; Ogawa Y; Martos R; Valsecchi A; Mesejo P; Ibáñez O; Imaizumi K Comput Methods Programs Biomed; 2021 Oct; 210():106380. PubMed ID: 34478914 [TBL] [Abstract][Full Text] [Related]
24. Relationship between the position of the mental foramen and the anterior loop of the inferior alveolar nerve as determined by cone beam computed tomography combined with mimics. Chen Z; Chen D; Tang L; Wang F J Comput Assist Tomogr; 2015; 39(1):86-93. PubMed ID: 25299797 [TBL] [Abstract][Full Text] [Related]
25. Anatomic study to determine a safe surgical reference point for mandibular ramus osteotomy. Park KR; Kim SY; Kim GJ; Park HS; Jung YS J Craniomaxillofac Surg; 2014 Jan; 42(1):22-7. PubMed ID: 23454267 [TBL] [Abstract][Full Text] [Related]
26. Comparison of mandibular landmarks from computed tomography and 3D digitizer data. Williams FL; Richtsmeier JT Clin Anat; 2003 Nov; 16(6):494-500. PubMed ID: 14566895 [TBL] [Abstract][Full Text] [Related]
27. Automatic landmarking as a convenient prerequisite for geometric morphometrics. Validation on cone beam computed tomography (CBCT)- based shape analysis of the nasal complex. Ridel AF; Demeter F; Galland M; L'abbé EN; Vandermeulen D; Oettlé AC Forensic Sci Int; 2020 Jan; 306():110095. PubMed ID: 31841934 [TBL] [Abstract][Full Text] [Related]
28. An Automatic 3D Facial Landmarking Algorithm Using 2D Gabor Wavelets. de Jong MA; Wollstein A; Ruff C; Dunaway D; Hysi P; Spector T; Fan Liu ; Niessen W; Koudstaal MJ; Kayser M; Wolvius EB; Bohringer S IEEE Trans Image Process; 2016 Feb; 25(2):580-8. PubMed ID: 26540684 [TBL] [Abstract][Full Text] [Related]
29. Automated 3D Landmarking of the Skull: A Novel Approach for Craniofacial Analysis. Wilke F; Matthews H; Herrick N; Dopkins N; Claes P; Walsh S bioRxiv; 2024 Feb; ():. PubMed ID: 38405968 [TBL] [Abstract][Full Text] [Related]
31. Automatic localization of three-dimensional cephalometric landmarks on CBCT images by extracting symmetry features of the skull. Neelapu BC; Kharbanda OP; Sardana V; Gupta A; Vasamsetti S; Balachandran R; Sardana HK Dentomaxillofac Radiol; 2018 Feb; 47(2):20170054. PubMed ID: 28845693 [TBL] [Abstract][Full Text] [Related]
32. Identification of a stable reference area for superimposing mandibular digital models. An K; Jang I; Choi DS; Jost-Brinkmann PG; Cha BK J Orofac Orthop; 2015 Nov; 76(6):508-19. PubMed ID: 26250456 [TBL] [Abstract][Full Text] [Related]
33. An automatic measurement system of distal femur morphological parameters using 3D slicer software. Chen Z; Wang Y; Li X; Wang K; Li Z; Yang P Bone; 2022 Mar; 156():116300. PubMed ID: 34958998 [TBL] [Abstract][Full Text] [Related]
34. The effect of automated landmark identification on morphometric analyses. Percival CJ; Devine J; Darwin BC; Liu W; van Eede M; Henkelman RM; Hallgrimsson B J Anat; 2019 Jun; 234(6):917-935. PubMed ID: 30901082 [TBL] [Abstract][Full Text] [Related]
35. Point-to-point registration with mandibulo-maxillary splint in open and closed jaw position. Evaluation of registration accuracy for computer-aided surgery of the mandible. Bettschart C; Kruse A; Matthews F; Zemann W; Obwegeser JA; Grätz KW; Lübbers HT J Craniomaxillofac Surg; 2012 Oct; 40(7):592-8. PubMed ID: 22079336 [TBL] [Abstract][Full Text] [Related]
36. Patient-specific pre-contouring of osteosynthesis plates for mandibular reconstruction: Using a three-dimensional key printed solution. Kraeima J; Glas HH; Witjes MJH; Schepman KP J Craniomaxillofac Surg; 2018 Jun; 46(6):1037-1040. PubMed ID: 29716816 [TBL] [Abstract][Full Text] [Related]
37. Automatic identification of radius and ulna bone landmarks on 3D virtual models. van Loon DFR; van Es EM; Eygendaal D; Veeger DHEJ; Colaris JW Comput Biol Med; 2024 Sep; 179():108891. PubMed ID: 39047505 [TBL] [Abstract][Full Text] [Related]
38. Comparing semi-landmarking approaches for analyzing three-dimensional cranial morphology. Rolfe S; Davis C; Maga AM Am J Phys Anthropol; 2021 May; 175(1):227-237. PubMed ID: 33483951 [TBL] [Abstract][Full Text] [Related]
39. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D). Al-Anezi T; Khambay B; Peng MJ; O'Leary E; Ju X; Ayoub A Int J Oral Maxillofac Surg; 2013 Jan; 42(1):9-18. PubMed ID: 23218511 [TBL] [Abstract][Full Text] [Related]
40. Fully Automatic Landmarking of Syndromic 3D Facial Surface Scans Using 2D Images. Bannister JJ; Crites SR; Aponte JD; Katz DC; Wilms M; Klein OD; Bernier FPJ; Spritz RA; Hallgrímsson B; Forkert ND Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503190 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]