These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36718873)
1. ATP-Independent and Cell-Free Biosynthesis of β-Hydroxy Acids Using Vinyl Esters as Smart Substrates. Orrego AH; Rubanu MG; López IL; Andrés-Sanz D; García-Marquina G; Pieslinger GE; Salassa L; López-Gallego F Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202218312. PubMed ID: 36718873 [TBL] [Abstract][Full Text] [Related]
2. Studies on the effects of coenzyme A-SH: acetyl coenzyme A, nicotinamide adenine dinucleotide: reduced nicotinamide adenine dinucleotide, and adenosine diphosphate: adenosine triphosphate ratios on the interconversion of active and inactive pyruvate dehydrogenase in isolated rat heart mitochondria. Hansford RG J Biol Chem; 1976 Sep; 251(18):5483-9. PubMed ID: 184082 [TBL] [Abstract][Full Text] [Related]
3. Coenzyme A Thioester Intermediates as Platform Molecules in Cell-Free Chemical Biomanufacturing. Ducrot L; López IL; Orrego AH; López-Gallego F Chembiochem; 2024 Jan; 25(2):e202300673. PubMed ID: 37994376 [TBL] [Abstract][Full Text] [Related]
4. Cell-Free Biosynthesis of ω-Hydroxy Acids Boosted by a Synergistic Combination of Alcohol Dehydrogenases. Velasco-Lozano S; Santiago-Arcos J; Grazia Rubanu M; López-Gallego F ChemSusChem; 2022 May; 15(9):e202200397. PubMed ID: 35348296 [TBL] [Abstract][Full Text] [Related]
5. Regulation of fatty acid beta-oxidation in rat heart mitochondria. Wang HY; Baxter CF; Schulz H Arch Biochem Biophys; 1991 Sep; 289(2):274-80. PubMed ID: 1898072 [TBL] [Abstract][Full Text] [Related]
6. On the capacity of the beta-oxidation of palmitate and palmitoyl-esters in rat liver mitochondria. Farstad M; Berge R Acta Physiol Scand; 1978 Nov; 104(3):337-48. PubMed ID: 31061 [TBL] [Abstract][Full Text] [Related]
7. Observations on the elimination of water from 2-hydroxy acids in the metabolism of amino acids by Clostridium sporogenes. Machacek-Pitsch C; Rauschenbach P; Simon H Biol Chem Hoppe Seyler; 1985 Nov; 366(11):1057-62. PubMed ID: 4074497 [TBL] [Abstract][Full Text] [Related]
8. Regulation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria. Batenburg JJ; Olson MS J Biol Chem; 1976 Mar; 251(5):1364-70. PubMed ID: 176149 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial β-oxidation of saturated fatty acids in humans. Adeva-Andany MM; Carneiro-Freire N; Seco-Filgueira M; Fernández-Fernández C; Mouriño-Bayolo D Mitochondrion; 2019 May; 46():73-90. PubMed ID: 29551309 [TBL] [Abstract][Full Text] [Related]
10. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Dellomonaco C; Clomburg JM; Miller EN; Gonzalez R Nature; 2011 Aug; 476(7360):355-9. PubMed ID: 21832992 [TBL] [Abstract][Full Text] [Related]
11. Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. Hunt MC; Solaas K; Kase BF; Alexson SE J Biol Chem; 2002 Jan; 277(2):1128-38. PubMed ID: 11673457 [TBL] [Abstract][Full Text] [Related]
12. A shared binding site for NAD+ and coenzyme A in an acetaldehyde dehydrogenase involved in bacterial degradation of aromatic compounds. Lei Y; Pawelek PD; Powlowski J Biochemistry; 2008 Jul; 47(26):6870-82. PubMed ID: 18537268 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis of 3-hydroxy fatty acids, the pheromone components of female mallard ducks, by cell-free preparations from the uropygial gland. Kolattukudy PE; Rogers L Arch Biochem Biophys; 1987 Jan; 252(1):121-9. PubMed ID: 3813530 [TBL] [Abstract][Full Text] [Related]
14. 5-Hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for beta-oxidation of fatty acids. Hanley PJ; Dröse S; Brandt U; Lareau RA; Banerjee AL; Srivastava DK; Banaszak LJ; Barycki JJ; Van Veldhoven PP; Daut J J Physiol; 2005 Jan; 562(Pt 2):307-18. PubMed ID: 15513944 [TBL] [Abstract][Full Text] [Related]
15. Acyl coenzyme A esters differentially activate cardiac and beta-cell adenosine triphosphate-sensitive potassium channels in a side-chain length-specific manner. Fox JE; Magga J; Giles WR; Light PE Metabolism; 2003 Oct; 52(10):1313-9. PubMed ID: 14564684 [TBL] [Abstract][Full Text] [Related]
16. Coenzyme A-dependent modification of fatty acyl chains of rat liver membrane phospholipids: possible involvement of ATP-independent acyl-CoA synthesis. Sugiura T; Kudo N; Ojima T; Kondo S; Yamashita A; Waku K J Lipid Res; 1995 Mar; 36(3):440-50. PubMed ID: 7775856 [TBL] [Abstract][Full Text] [Related]
17. [Construction of multi-enzyme cascade reactions and its application in the synthesis of bifunctional chemicals]. Li J; Shi K; Zhang Z; Xu J; Yu H Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2158-2189. PubMed ID: 37401588 [TBL] [Abstract][Full Text] [Related]
18. Diabetes and the control of pyruvate dehydrogenase in rat heart mitochondria by concentration ratios of adenosine triphosphate/adenosine diphosphate, of reduced/oxidized nicotinamide-adenine dinucleotide and of acetyl-coenzyme A/coenzyme A. Kerbey AL; Radcliffe PM; Randle PJ Biochem J; 1977 Jun; 164(3):509-19. PubMed ID: 196589 [TBL] [Abstract][Full Text] [Related]