These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications. Lopes C; Cristóvão J; Silvério V; Lino PR; Fonte P Expert Opin Drug Deliv; 2022 Oct; 19(10):1381-1395. PubMed ID: 36223174 [TBL] [Abstract][Full Text] [Related]
3. Payload distribution and capacity of mRNA lipid nanoparticles. Li S; Hu Y; Li A; Lin J; Hsieh K; Schneiderman Z; Zhang P; Zhu Y; Qiu C; Kokkoli E; Wang TH; Mao HQ Nat Commun; 2022 Sep; 13(1):5561. PubMed ID: 36151112 [TBL] [Abstract][Full Text] [Related]
4. Chemistry of Lipid Nanoparticles for RNA Delivery. Eygeris Y; Gupta M; Kim J; Sahay G Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635 [TBL] [Abstract][Full Text] [Related]
5. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. Guimaraes PPG; Zhang R; Spektor R; Tan M; Chung A; Billingsley MM; El-Mayta R; Riley RS; Wang L; Wilson JM; Mitchell MJ J Control Release; 2019 Dec; 316():404-417. PubMed ID: 31678653 [TBL] [Abstract][Full Text] [Related]
6. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. Ball RL; Hajj KA; Vizelman J; Bajaj P; Whitehead KA Nano Lett; 2018 Jun; 18(6):3814-3822. PubMed ID: 29694050 [TBL] [Abstract][Full Text] [Related]
7. Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA. Miao H; Huang K; Li Y; Li R; Zhou X; Shi J; Tong Z; Sun Z; Yu A Int J Pharm; 2023 Jun; 640():123050. PubMed ID: 37201764 [TBL] [Abstract][Full Text] [Related]
8. Encapsulating In Vitro Transcribed circRNA into Lipid Nanoparticles Via Microfluidic Mixing. Juchem M; Cushman S; Lu D; Chatterjee S; Bär C; Thum T Methods Mol Biol; 2024; 2765():247-260. PubMed ID: 38381344 [TBL] [Abstract][Full Text] [Related]
9. On the Influence of Fabrication Methods and Materials for mRNA-LNP Production: From Size and Morphology to Internal Structure and mRNA Delivery Performance In Vitro and In Vivo. Bi D; Wilhelmy C; Unthan D; Keil IS; Zhao B; Kolb B; Koning RI; Graewert MA; Wouters B; Zwier R; Bussmann J; Hankemeier T; Diken M; Haas H; Langguth P; Barz M; Zhang H Adv Healthc Mater; 2024 Oct; 13(26):e2401252. PubMed ID: 38889433 [TBL] [Abstract][Full Text] [Related]
10. The mixing method used to formulate lipid nanoparticles affects mRNA delivery efficacy and organ tropism. Strelkova Petersen DM; Chaudhary N; Arral ML; Weiss RM; Whitehead KA Eur J Pharm Biopharm; 2023 Nov; 192():126-135. PubMed ID: 37838143 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. Maeki M; Uno S; Niwa A; Okada Y; Tokeshi M J Control Release; 2022 Apr; 344():80-96. PubMed ID: 35183654 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive Optimization of a Freeze-Drying Process Achieving Enhanced Long-Term Stability and In Vivo Performance of Lyophilized mRNA-LNPs. Alejo T; Toro-Córdova A; Fernández L; Rivero A; Stoian AM; Pérez L; Navarro V; Martínez-Oliván J; de Miguel D Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39408932 [TBL] [Abstract][Full Text] [Related]
13. Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length. Mrksich K; Padilla MS; Joseph RA; Han EL; Kim D; Palanki R; Xu J; Mitchell MJ J Biomed Mater Res A; 2024 Sep; 112(9):1494-1505. PubMed ID: 38487970 [TBL] [Abstract][Full Text] [Related]
14. Testing the In Vitro and In Vivo Efficiency of mRNA-Lipid Nanoparticles Formulated by Microfluidic Mixing. El-Mayta R; Padilla MS; Billingsley MM; Han X; Mitchell MJ J Vis Exp; 2023 Jan; (191):. PubMed ID: 36744791 [TBL] [Abstract][Full Text] [Related]
15. Design and lyophilization of mRNA-encapsulating lipid nanoparticles. Wang T; Yu T; Li W; Liu Q; Sung TC; Higuchi A Int J Pharm; 2024 Sep; 662():124514. PubMed ID: 39067550 [TBL] [Abstract][Full Text] [Related]
17. Leveraging Biological Buffers for Efficient Messenger RNA Delivery via Lipid Nanoparticles. Henderson MI; Eygeris Y; Jozic A; Herrera M; Sahay G Mol Pharm; 2022 Nov; 19(11):4275-4285. PubMed ID: 36129254 [TBL] [Abstract][Full Text] [Related]
18. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Wang X; Liu S; Sun Y; Yu X; Lee SM; Cheng Q; Wei T; Gong J; Robinson J; Zhang D; Lian X; Basak P; Siegwart DJ Nat Protoc; 2023 Jan; 18(1):265-291. PubMed ID: 36316378 [TBL] [Abstract][Full Text] [Related]
19. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic Studies of an Automated Lipid Nanoparticle Reveal Critical Pharmaceutical Properties Associated with Enhanced mRNA Functional Delivery In Vitro and In Vivo. Cui L; Hunter MR; Sonzini S; Pereira S; Romanelli SM; Liu K; Li W; Liang L; Yang B; Mahmoudi N; Desai AS Small; 2022 Mar; 18(9):e2105832. PubMed ID: 34914866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]