These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36719341)

  • 1. Strategy maps: Generalised giving-up densities for optimal foraging.
    Arehart E; Reimer JR; Adler FR
    Ecol Lett; 2023 Mar; 26(3):398-410. PubMed ID: 36719341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Among-individual differences in foraging modulate resource exploitation under perceived predation risk.
    Eccard JA; Liesenjohann T; Dammhahn M
    Oecologia; 2020 Dec; 194(4):621-634. PubMed ID: 33141325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foraging in groups affects giving-up densities: solo foragers quit sooner.
    Carthey AJ; Banks PB
    Oecologia; 2015 Jul; 178(3):707-13. PubMed ID: 25740332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of predation risk and missed opportunity costs for context-dependent foraging patterns.
    Eccard JA; Liesenjohann T
    PLoS One; 2014; 9(5):e94107. PubMed ID: 24809666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unpacking chimpanzee (Pan troglodytes) patch use: Do individuals respond to food patches as predicted by the marginal value theorem?
    O'Bryan LR; Lambeth SP; Schapiro SJ; Wilson ML
    Am J Primatol; 2020 Dec; 82(12):e23208. PubMed ID: 33118192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving on with foraging theory: incorporating movement decisions into the functional response of a gregarious shorebird.
    van Gils JA; van der Geest M; De Meulenaer B; Gillis H; Piersma T; Folmer EO
    J Anim Ecol; 2015 Mar; 84(2):554-64. PubMed ID: 25283546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary stability of optimal foraging: partial preferences in the diet and patch models.
    Křivan V
    J Theor Biol; 2010 Dec; 267(4):486-94. PubMed ID: 20863839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foraging in a tidally structured environment by Red Knots (Calidris canutus): ideal, but not free.
    van Gils JA; Spaans B; Dekinga A; Piersma T
    Ecology; 2006 May; 87(5):1189-202. PubMed ID: 16761598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predation risk influences food-web structure by constraining species diet choice.
    Ho HC; Tylianakis JM; Zheng JX; Pawar S
    Ecol Lett; 2019 Nov; 22(11):1734-1745. PubMed ID: 31389145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down effects of foraging decisions on local, landscape and regional biodiversity of resources (DivGUD).
    Eccard JA; Mendes Ferreira C; Peredo Arce A; Dammhahn M
    Ecol Lett; 2022 Jan; 25(1):3-16. PubMed ID: 34713543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal movement strategies for social foragers in unpredictable environments.
    Hancock PA; Milner-Gulland EJ
    Ecology; 2006 Aug; 87(8):2094-102. PubMed ID: 16937648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How optimally foraging predators promote prey coexistence in a variable environment.
    Stump SM; Chesson P
    Theor Popul Biol; 2017 Apr; 114():40-58. PubMed ID: 27998797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking optimal foraging behavior to bird community structure in an urban-desert landscape: field experiments with artificial food patches.
    Shochat E; Lerman SB; Katti M; Lewis DB
    Am Nat; 2004 Aug; 164(2):232-43. PubMed ID: 15278846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty in foraging success and its consequences on fitness.
    Okuyama T
    Behav Processes; 2022 May; 198():104643. PubMed ID: 35439542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative frequency-dependent foraging behaviour in a generalist herbivore (Alces alces) and its stabilizing influence on food web dynamics.
    Hoy SR; Vucetich JA; Liu R; DeAngelis DL; Peterson RO; Vucetich LM; Henderson JJ
    J Anim Ecol; 2019 Sep; 88(9):1291-1304. PubMed ID: 31131882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. To eat and not be eaten: diurnal mass gain and foraging strategies in wintering great tits.
    Moiron M; Mathot KJ; Dingemanse NJ
    Proc Biol Sci; 2018 Mar; 285(1874):. PubMed ID: 29540518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural network model of foraging decisions made under predation risk.
    Coleman SL; Brown VR; Levine DS; Mellgren RL
    Cogn Affect Behav Neurosci; 2005 Dec; 5(4):434-51. PubMed ID: 16541813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titrating the Cost of Plant Toxins Against Predators: a Case Study with Common Duikers, Sylvicapra grimmia.
    Abu Baker MA
    J Chem Ecol; 2015 Oct; 41(10):924-8. PubMed ID: 26364293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foraging patterns of voles at heterogeneous avian and uniform mustelid predation risk.
    Eccard JA; Pusenius J; Sundell J; Halle S; Ylönen H
    Oecologia; 2008 Oct; 157(4):725-34. PubMed ID: 18648858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. So many choices, so little time: Food preference and movement vary with the landscape of fear.
    Ferreira CM; Dammhahn M; Eccard JA
    Ecol Evol; 2023 Jul; 13(7):e10330. PubMed ID: 37520778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.