These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 36719783)
1. Engineering High-Quality Cartilage Microtissues Using Hydrocortisone Functionalized Microwells. Burdis R; Kronemberger GS; Kelly DJ Tissue Eng Part C Methods; 2023 Apr; 29(4):121-133. PubMed ID: 36719783 [TBL] [Abstract][Full Text] [Related]
2. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues. Futrega K; Palmer JS; Kinney M; Lott WB; Ungrin MD; Zandstra PW; Doran MR Biomaterials; 2015 Sep; 62():1-12. PubMed ID: 26010218 [TBL] [Abstract][Full Text] [Related]
3. Rapidly Degrading Hydrogels to Support Biofabrication and 3D Bioprinting Using Cartilage Microtissues. Kronemberger GS; Spagnuolo FD; Karam AS; Chattahy K; Storey KJ; Kelly DJ ACS Biomater Sci Eng; 2024 Oct; 10(10):6441-6450. PubMed ID: 39240109 [TBL] [Abstract][Full Text] [Related]
4. Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Yin H; Wang Y; Sun X; Cui G; Sun Z; Chen P; Xu Y; Yuan X; Meng H; Xu W; Wang A; Guo Q; Lu S; Peng J Acta Biomater; 2018 Sep; 77():127-141. PubMed ID: 30030172 [TBL] [Abstract][Full Text] [Related]
5. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Yin H; Wang Y; Sun Z; Sun X; Xu Y; Li P; Meng H; Yu X; Xiao B; Fan T; Wang Y; Xu W; Wang A; Guo Q; Peng J; Lu S Acta Biomater; 2016 Mar; 33():96-109. PubMed ID: 26802442 [TBL] [Abstract][Full Text] [Related]
6. Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering. Nulty J; Burdis R; Kelly DJ Front Bioeng Biotechnol; 2021; 9():661989. PubMed ID: 34169064 [TBL] [Abstract][Full Text] [Related]
7. Temporal Enzymatic Treatment to Enhance the Remodeling of Multiple Cartilage Microtissues into a Structurally Organized Tissue. Burdis R; Gallostra XB; Kelly DJ Adv Healthc Mater; 2024 Jan; 13(3):e2300174. PubMed ID: 37858935 [TBL] [Abstract][Full Text] [Related]
8. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models. Schrobback K; Klein TJ; Woodfield TB Tissue Eng Part A; 2015 Jun; 21(11-12):1785-94. PubMed ID: 25693425 [TBL] [Abstract][Full Text] [Related]
9. Biofabrication and bioprinting using cellular aggregates, microtissues and organoids for the engineering of musculoskeletal tissues. Burdis R; Kelly DJ Acta Biomater; 2021 May; 126():1-14. PubMed ID: 33711529 [TBL] [Abstract][Full Text] [Related]
11. Spatial patterning of phenotypically distinct microtissues to engineer osteochondral grafts for biological joint resurfacing. Burdis R; Chariyev-Prinz F; Browe DC; Freeman FE; Nulty J; McDonnell EE; Eichholz KF; Wang B; Brama P; Kelly DJ Biomaterials; 2022 Oct; 289():121750. PubMed ID: 36084483 [TBL] [Abstract][Full Text] [Related]
12. Repair of Osteochondral Defects With Predifferentiated Mesenchymal Stem Cells of Distinct Phenotypic Character Derived From a Nanotopographic Platform. Wu Y; Yang Z; Denslin V; Ren X; Lee CS; Yap FL; Lee EH Am J Sports Med; 2020 Jun; 48(7):1735-1747. PubMed ID: 32191492 [TBL] [Abstract][Full Text] [Related]
13. Generation of hyaline-like cartilage tissue from human mesenchymal stromal cells within the self-generated extracellular matrix. Xie M; Zhang Y; Xiong Z; Hines S; Shang J; Clark KL; Tan S; Alexander PG; Lin H Acta Biomater; 2022 Sep; 149():150-166. PubMed ID: 35779770 [TBL] [Abstract][Full Text] [Related]
14. Featured Article: In vitro development of personalized cartilage microtissues uncovers an individualized differentiation capacity of human chondrocytes. Martin F; Lehmann M; Sack U; Anderer U Exp Biol Med (Maywood); 2017 Dec; 242(18):1746-1756. PubMed ID: 28853609 [TBL] [Abstract][Full Text] [Related]
15. Robotics-Driven Manufacturing of Cartilaginous Microtissues for Skeletal Tissue Engineering Applications. Decoene I; Nasello G; Madeiro de Costa RF; Nilsson Hall G; Pastore A; Van Hoven I; Ribeiro Viseu S; Verfaillie C; Geris L; Luyten FP; Papantoniou I Stem Cells Transl Med; 2024 Mar; 13(3):278-292. PubMed ID: 38217535 [TBL] [Abstract][Full Text] [Related]
16. Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues. Staubli F; Stoddart MJ; D'Este M; Schwab A Acta Biomater; 2022 Apr; 143():253-265. PubMed ID: 35240315 [TBL] [Abstract][Full Text] [Related]
17. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering. Reppel L; Schiavi J; Charif N; Leger L; Yu H; Pinzano A; Henrionnet C; Stoltz JF; Bensoussan D; Huselstein C Stem Cell Res Ther; 2015 Dec; 6():260. PubMed ID: 26718750 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Lin S; Lee WYW; Feng Q; Xu L; Wang B; Man GCW; Chen Y; Jiang X; Bian L; Cui L; Wei B; Li G Stem Cell Res Ther; 2017 Oct; 8(1):221. PubMed ID: 28974254 [TBL] [Abstract][Full Text] [Related]
20. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]