BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36719852)

  • 1. Liquid-Liquid Flow at Nanoscale: Slip and Hydrodynamic Boundary Conditions.
    Hilaire L; Siboulet B; Charton S; Dufrêche JF
    Langmuir; 2023 Feb; 39(6):2260-2273. PubMed ID: 36719852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion and Gas Flow Dynamics in Partially Saturated Smectites.
    Owusu JP; Karalis K; Prasianakis NI; Churakov SV
    J Phys Chem C Nanomater Interfaces; 2023 Jul; 127(29):14425-14438. PubMed ID: 37529667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between induced fluid structure and boundary slip in nanoscale polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051603. PubMed ID: 21230484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From local to hydrodynamic friction in Brownian motion: A multiparticle collision dynamics simulation study.
    Theers M; Westphal E; Gompper G; Winkler RG
    Phys Rev E; 2016 Mar; 93(3):032604. PubMed ID: 27078411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Squeezing and stick-slip friction behaviors of lubricants in boundary lubrication.
    Xu RG; Leng Y
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6560-6565. PubMed ID: 29899150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Layering and Supporting Substrate on Liquid Slip at the Single-Layer Graphene Interface.
    Greenwood G; Kim JM; Zheng Q; Nahid SM; Nam S; Espinosa-Marzal RM
    ACS Nano; 2021 Jun; 15(6):10095-10106. PubMed ID: 34114798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit.
    Zhang J; Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033016. PubMed ID: 25871211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations.
    Priezjev NV; Darhuber AA; Troian SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041608. PubMed ID: 15903683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice friction at the nanoscale.
    Baran Ł; Llombart P; Rżysko W; MacDowell LG
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2209545119. PubMed ID: 36442119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How boundary slip controls emergent Darcy flow of liquids in tortuous and in capillary pores.
    Singh K
    Phys Rev E; 2020 Jul; 102(1-1):013101. PubMed ID: 32794951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slip-mediated dewetting of polymer microdroplets.
    McGraw JD; Chan TS; Maurer S; Salez T; Benzaquen M; Raphaël E; Brinkmann M; Jacobs K
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1168-73. PubMed ID: 26787903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation.
    Cao BY; Chen M; Guo ZY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066311. PubMed ID: 17280152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofluidics of thin polymer films: linking the slip boundary condition at solid-liquid interfaces to macroscopic pattern formation and microscopic interfacial properties.
    McGraw JD; Bäumchen O; Klos M; Haefner S; Lessel M; Backes S; Jacobs K
    Adv Colloid Interface Sci; 2014 Aug; 210():13-20. PubMed ID: 24780402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying hydrodynamic slip: a comprehensive analysis of dewetting profiles.
    Fetzer R; Münch A; Wagner B; Rauscher M; Jacobs K
    Langmuir; 2007 Oct; 23(21):10559-66. PubMed ID: 17803324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption-induced slip inhibition for polymer melts on ideal substrates.
    Ilton M; Salez T; Fowler PD; Rivetti M; Aly M; Benzaquen M; McGraw JD; Raphaël E; Dalnoki-Veress K; Bäumchen O
    Nat Commun; 2018 Mar; 9(1):1172. PubMed ID: 29563496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary conditions at the liquid-liquid interface in the presence of surfactants.
    Hu Y; Zhang X; Wang W
    Langmuir; 2010 Jul; 26(13):10693-702. PubMed ID: 20507080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics.
    Qian T; Wang XP; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):022501. PubMed ID: 16196615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.