These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36720044)

  • 1. Combined electroosmotic and pressure-driven transport of neutral solutes across a rough, porous-walled microtube.
    Sengupta S; Dasgupta T; Roy D; Dejam M; De S
    Electrophoresis; 2023 Apr; 44(7-8):711-724. PubMed ID: 36720044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrohydrodynamic transport of non-symmetric electrolyte through porous wall of a microtube.
    Bhattacharjee S; Roy D; Pal A; De S
    Electrophoresis; 2019 Mar; 40(5):720-729. PubMed ID: 30362567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass transfer of a neutral solute in porous microchannel under streaming potential.
    Mondal S; De S
    Electrophoresis; 2014 Mar; 35(5):681-90. PubMed ID: 24339025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass transfer of a neutral solute in polyelectrolyte grafted soft nanochannel with porous wall.
    Roy D; Bhattacharjee S; De S
    Electrophoresis; 2020 Apr; 41(7-8):578-587. PubMed ID: 31743466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of overlapping electric double layer on mass transport of a macro-solute across porous wall of a micro/nanochannel for power law fluid.
    Bhattacharjee S; Mondal M; De S
    Electrophoresis; 2017 May; 38(9-10):1301-1309. PubMed ID: 28256729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects.
    Mondal S; De S
    Electrophoresis; 2013 Mar; 34(5):668-73. PubMed ID: 23192435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of non-Newtonian power law rheology on mass transport of a neutral solute for electro-osmotic flow in a porous microtube.
    Mondal S; De S
    Biomicrofluidics; 2013; 7(4):44113. PubMed ID: 24404046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slip-driven electroosmotic transport through porous media.
    Gaikwad H; Mondal PK
    Electrophoresis; 2017 Mar; 38(5):596-606. PubMed ID: 27921289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmosis in homogeneously charged micro- and nanoscale random porous media.
    Wang M; Chen S
    J Colloid Interface Sci; 2007 Oct; 314(1):264-73. PubMed ID: 17585928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroosmotic flow through a microparallel channel with 3D wall roughness.
    Chang L; Jian Y; Buren M; Sun Y
    Electrophoresis; 2016 Feb; 37(3):482-92. PubMed ID: 26333852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative characterization of solute transport in fractures with different surface roughness based on ten Barton profiles.
    Hu Y; Xu W; Zhan L; Li J; Chen Y
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):13534-13549. PubMed ID: 32026373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices.
    Chakraborty J; Ray S; Chakraborty S
    Electrophoresis; 2012 Feb; 33(3):419-25. PubMed ID: 22212910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear dispersion in a capillary tube with a porous wall.
    Dejam M; Hassanzadeh H; Chen Z
    J Contam Hydrol; 2016; 185-186():87-104. PubMed ID: 26845232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Mass Transfer Index (MTI): A semi-empirical approach for quantifying transport of solutes in variably saturated porous media.
    Stults J; Illangasekare T; Higgins CP
    J Contam Hydrol; 2021 Oct; 242():103842. PubMed ID: 34118564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling wall effects in capillary electrochromatography.
    Scales N; Tait RN
    J Chromatogr A; 2008 Sep; 1205(1-2):150-7. PubMed ID: 18722624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution.
    Chang CC; Kuo CY; Wang CY
    Electrophoresis; 2011 Nov; 32(23):3341-7. PubMed ID: 22072500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spreadsheet analysis of the field-driven start-up flow in a microfluidic channel.
    Mondal PK; Roy M
    Electrophoresis; 2021 Dec; 42(23):2465-2473. PubMed ID: 33856072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effects.
    Nadeem S; Kiani MN; Saleem A; Issakhov A
    Electrophoresis; 2020 Jul; 41(13-14):1198-1205. PubMed ID: 32304245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.