These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36720163)

  • 1. The effect of dynamic twisting on the flow field and the unsteady forces of a heaving flat plate.
    Soto C; Bhattacharya S
    Bioinspir Biomim; 2023 Feb; 18(2):. PubMed ID: 36720163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A numerical study on the aerodynamic effects of dynamic twisting on forward flight flapping wings.
    Dong Y; Song B; Yang W; Xue D
    Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38306681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.
    Ramamurti R; Sandberg WC; Löhner R; Walker JA; Westneat MW
    J Exp Biol; 2002 Oct; 205(Pt 19):2997-3008. PubMed ID: 12200403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry.
    Drucker EG; Lauder GV
    J Exp Biol; 1999; 202(Pt 18):2393-2412. PubMed ID: 10460729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles.
    Zbikowski R
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenomenology and scaling of optimal flapping wing kinematics.
    Gehrke A; Mulleners K
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments.
    Wang ZJ; Birch JM; Dickinson MH
    J Exp Biol; 2004 Jan; 207(Pt 3):449-60. PubMed ID: 14691093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Labriform propulsion in fishes: kinematics of flapping aquatic flight in the bird wrasse Gomphosus varius (Labridae).
    Walker J; Westneat M
    J Exp Biol; 1997; 200(Pt 11):1549-69. PubMed ID: 9319452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
    Phan HV; Truong QT; Au TK; Park HC
    Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The aerodynamics of revolving wings I. Model hawkmoth wings.
    Usherwood JR; Ellington CP
    J Exp Biol; 2002 Jun; 205(Pt 11):1547-64. PubMed ID: 12000800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation.
    Gurka R; Krishnan K; Ben-Gida H; Kirchhefer AJ; Kopp GA; Guglielmo CG
    Interface Focus; 2017 Feb; 7(1):20160090. PubMed ID: 28163881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic performance of flapping wing with alula under different kinematics of complex flapping motion.
    Bao H; Song B; Ma D; Xue D
    Bioinspir Biomim; 2023 Dec; 19(1):. PubMed ID: 38011727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flying in reverse: kinematics and aerodynamics of a dragonfly in backward free flight.
    Bode-Oke AT; Zeyghami S; Dong H
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29950513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS.
    Dickinson M
    J Exp Biol; 1994 Jul; 192(1):179-206. PubMed ID: 9317589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational investigation of cicada aerodynamics in forward flight.
    Wan H; Dong H; Gai K
    J R Soc Interface; 2015 Jan; 12(102):20141116. PubMed ID: 25551136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight.
    Stalnov O; Ben-Gida H; Kirchhefer AJ; Guglielmo CG; Kopp GA; Liberzon A; Gurka R
    PLoS One; 2015; 10(9):e0134582. PubMed ID: 26394213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.