BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36720293)

  • 1. Plasticity of postsynaptic nanostructure.
    Droogers WJ; MacGillavry HD
    Mol Cell Neurosci; 2023 Mar; 124():103819. PubMed ID: 36720293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular organization and assembly of the postsynaptic density of excitatory brain synapses.
    Kim E; Ko J
    Results Probl Cell Differ; 2006; 43():1-23. PubMed ID: 17068965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95.
    Vallejo D; Codocedo JF; Inestrosa NC
    Mol Neurobiol; 2017 Apr; 54(3):1759-1776. PubMed ID: 26884267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of postsynaptic density proteins: glutamate receptor subunits and scaffolding proteins.
    Shinohara Y
    Hippocampus; 2012 May; 22(5):942-53. PubMed ID: 21594948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors.
    MacGillavry HD; Song Y; Raghavachari S; Blanpied TA
    Neuron; 2013 May; 78(4):615-22. PubMed ID: 23719161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional organization of postsynaptic glutamate receptors.
    Scheefhals N; MacGillavry HD
    Mol Cell Neurosci; 2018 Sep; 91():82-94. PubMed ID: 29777761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-terminal SAP97 isoforms differentially regulate synaptic structure and postsynaptic surface pools of AMPA receptors.
    Goodman L; Baddeley D; Ambroziak W; Waites CL; Garner CC; Soeller C; Montgomery JM
    Hippocampus; 2017 Jun; 27(6):668-682. PubMed ID: 28244171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity.
    Ehrlich I; Malinow R
    J Neurosci; 2004 Jan; 24(4):916-27. PubMed ID: 14749436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy.
    Tao CL; Liu YT; Sun R; Zhang B; Qi L; Shivakoti S; Tian CL; Zhang P; Lau PM; Zhou ZH; Bi GQ
    J Neurosci; 2018 Feb; 38(6):1493-1510. PubMed ID: 29311144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics and nanoscale organization of the postsynaptic endocytic zone at excitatory synapses.
    Catsburg LA; Westra M; van Schaik AM; MacGillavry HD
    Elife; 2022 Jan; 11():. PubMed ID: 35072626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral organization of the postsynaptic density.
    MacGillavry HD; Kerr JM; Blanpied TA
    Mol Cell Neurosci; 2011 Dec; 48(4):321-31. PubMed ID: 21920440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity: implications for human behavior pathologies.
    de Bartolomeis A; Fiore G
    Int Rev Neurobiol; 2004; 59():221-54. PubMed ID: 15006490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subsynaptic AMPA receptor distribution is acutely regulated by actin-driven reorganization of the postsynaptic density.
    Kerr JM; Blanpied TA
    J Neurosci; 2012 Jan; 32(2):658-73. PubMed ID: 22238102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: relevance for neuropsychiatric diseases.
    Iasevoli F; Tomasetti C; de Bartolomeis A
    Neurochem Res; 2013 Jan; 38(1):1-22. PubMed ID: 22991141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of synaptic protein composition during developmental synapse maturation.
    Kaizuka T; Takumi T
    Eur J Neurosci; 2024 Jun; 59(11):2894-2914. PubMed ID: 38571321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex.
    Béïque JC; Andrade R
    J Physiol; 2003 Feb; 546(Pt 3):859-67. PubMed ID: 12563010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity.
    Wheal HV; Chen Y; Mitchell J; Schachner M; Maerz W; Wieland H; Van Rossum D; Kirsch J
    Prog Neurobiol; 1998 Aug; 55(6):611-40. PubMed ID: 9670221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking Nanoscale Dynamics of AMPA Receptor Organization to Plasticity of Excitatory Synapses and Learning.
    Choquet D
    J Neurosci; 2018 Oct; 38(44):9318-9329. PubMed ID: 30381423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of postsynaptic density proteins and glutamate receptors in axodendritic and dendrodendritic synapses of the rat olfactory bulb.
    Sassoé-Pognetto M; Utvik JK; Camoletto P; Watanabe M; Stephenson FA; Bredt DS; Ottersen OP
    J Comp Neurol; 2003 Aug; 463(3):237-48. PubMed ID: 12820158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Control of Synaptic Composition and Function.
    Sinnen BL; Bowen AB; Forte JS; Hiester BG; Crosby KC; Gibson ES; Dell'Acqua ML; Kennedy MJ
    Neuron; 2017 Feb; 93(3):646-660.e5. PubMed ID: 28132827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.