These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 36720705)
1. Dredging the Charge-Carrier Transfer Pathway for Efficient Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Li P; Yan L; Cao Q; Liang C; Zhu H; Peng S; Yang Y; Liang Y; Zhao R; Zang S; Zhang Y; Song Y Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202217910. PubMed ID: 36720705 [TBL] [Abstract][Full Text] [Related]
2. Unraveling the Role of Chloride in Vertical Growth of Low-Dimensional Ruddlesden-Popper Perovskites for Efficient Perovskite Solar Cells. Liu J; Chen Y; Ran C; Hu J; Lin Y; Xia Y; Chen Y ACS Appl Mater Interfaces; 2022 Aug; 14(30):34189-34197. PubMed ID: 34793120 [TBL] [Abstract][Full Text] [Related]
3. Promoting Ruddlesden-Popper Perovskite Formation by Tailoring Spacer Intramolecular Interaction for Efficient and Stable Solar Cells. Dong X; Li Y; Wang X; Zhou Y; Zhao Y; Song W; Xu S; Wang F; Ran C; Song L; Miao Z Small; 2024 Jul; 20(27):e2309218. PubMed ID: 38258343 [TBL] [Abstract][Full Text] [Related]
4. Low-Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for High-Performance Photovoltaics. Li P; Liang C; Liu XL; Li F; Zhang Y; Liu XT; Gu H; Hu X; Xing G; Tao X; Song Y Adv Mater; 2019 Aug; 31(35):e1901966. PubMed ID: 31267588 [TBL] [Abstract][Full Text] [Related]
5. Management of Crystallization Kinetics for Efficient and Stable Low-Dimensional Ruddlesden-Popper (LDRP) Lead-Free Perovskite Solar Cells. Qiu J; Xia Y; Chen Y; Huang W Adv Sci (Weinh); 2019 Jan; 6(1):1800793. PubMed ID: 30643710 [TBL] [Abstract][Full Text] [Related]
6. Phase Distribution and Carrier Dynamics in Multiple-Ring Aromatic Spacer-Based Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Xu Z; Lu D; Liu F; Lai H; Wan X; Zhang X; Liu Y; Chen Y ACS Nano; 2020 Apr; 14(4):4871-4881. PubMed ID: 32243131 [TBL] [Abstract][Full Text] [Related]
7. Fluorinated Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells with over 17% Power Conversion Efficiency and Improved Stability. Shi J; Gao Y; Gao X; Zhang Y; Zhang J; Jing X; Shao M Adv Mater; 2019 Sep; 31(37):e1901673. PubMed ID: 31379023 [TBL] [Abstract][Full Text] [Related]
8. Highly Efficient and Stable Dion-Jacobson Perovskite Solar Cells Enabled by Extended π-Conjugation of Organic Spacer. Xu Z; Lu D; Dong X; Chen M; Fu Q; Liu Y Adv Mater; 2021 Dec; 33(51):e2105083. PubMed ID: 34655111 [TBL] [Abstract][Full Text] [Related]
9. Highly Efficient and Stable FA-Based Quasi-2D Ruddlesden-Popper Perovskite Solar Cells by the Incorporation of β-Fluorophenylethanamine Cations. Zhang Y; Chen M; He T; Chen H; Zhang Z; Wang H; Lu H; Ling Q; Hu Z; Liu Y; Chen Y; Long G Adv Mater; 2023 Apr; 35(17):e2210836. PubMed ID: 36744546 [TBL] [Abstract][Full Text] [Related]
10. The Role of Bulk and Interface Recombination in High-Efficiency Low-Dimensional Perovskite Solar Cells. Zhang S; Hosseini SM; Gunder R; Petsiuk A; Caprioglio P; Wolff CM; Shoaee S; Meredith P; Schorr S; Unold T; Burn PL; Neher D; Stolterfoht M Adv Mater; 2019 Jul; 31(30):e1901090. PubMed ID: 31166640 [TBL] [Abstract][Full Text] [Related]
11. Highly Thermostable and Efficient Formamidinium-Based Low-Dimensional Perovskite Solar Cells. Cheng L; Liu Z; Li S; Zhai Y; Wang X; Qiao Z; Xu Q; Meng K; Zhu Z; Chen G Angew Chem Int Ed Engl; 2021 Jan; 60(2):856-864. PubMed ID: 33021033 [TBL] [Abstract][Full Text] [Related]
12. Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells. Zhang X; Munir R; Xu Z; Liu Y; Tsai H; Nie W; Li J; Niu T; Smilgies DM; Kanatzidis MG; Mohite AD; Zhao K; Amassian A; Liu SF Adv Mater; 2018 May; 30(21):e1707166. PubMed ID: 29611240 [TBL] [Abstract][Full Text] [Related]
13. Modulating the Dipole Moment of Secondary Ammonium Spacers for Efficient 2D Ruddlesden-Popper Perovskite Solar Cells. Zhang H; Wang R; Yang L; Hu Z; Liu H; Liu Y Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202318206. PubMed ID: 38165142 [TBL] [Abstract][Full Text] [Related]
14. Enhanced V Meng J; Song D; Huang D; Li Y; Li Y; Maqsood A; Zhao S; Qiao B; Zhu H; Xu Z Phys Chem Chem Phys; 2019 Dec; 22(1):54-61. PubMed ID: 31650139 [TBL] [Abstract][Full Text] [Related]
15. Fine Multi-Phase Alignments in 2D Perovskite Solar Cells with Efficiency over 17% via Slow Post-Annealing. Wu G; Li X; Zhou J; Zhang J; Zhang X; Leng X; Wang P; Chen M; Zhang D; Zhao K; Liu SF; Zhou H; Zhang Y Adv Mater; 2019 Oct; 31(42):e1903889. PubMed ID: 31475406 [TBL] [Abstract][Full Text] [Related]
16. Hot-Casting and Anti-solvent Free Fabrication of Efficient and Stable Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Yang W; Zhan Y; Yang F; Li Y ACS Appl Mater Interfaces; 2021 Dec; 13(51):61039-61046. PubMed ID: 34910452 [TBL] [Abstract][Full Text] [Related]
17. Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells. Yan L; Ma J; Li P; Zang S; Han L; Zhang Y; Song Y Adv Mater; 2022 Feb; 34(7):e2106822. PubMed ID: 34676930 [TBL] [Abstract][Full Text] [Related]
18. Improve the Charge Carrier Transporting in Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Dong X; Li X; Wang X; Zhao Y; Song W; Wang F; Xu S; Miao Z; Wu Z Adv Mater; 2024 May; 36(19):e2313056. PubMed ID: 38315828 [TBL] [Abstract][Full Text] [Related]
19. Over 21% Efficiency Stable 2D Perovskite Solar Cells. Shao M; Bie T; Yang L; Gao Y; Jin X; He F; Zheng N; Yu Y; Zhang X Adv Mater; 2022 Jan; 34(1):e2107211. PubMed ID: 34648207 [TBL] [Abstract][Full Text] [Related]
20. Efficient and Stable Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells Enabled by Reducing Tunnel Barrier. Chao L; Niu T; Xia Y; Ran X; Chen Y; Huang W J Phys Chem Lett; 2019 Mar; 10(6):1173-1179. PubMed ID: 30807176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]