These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36720932)

  • 1. A systematic survey of RUM process parameter optimization and their influence on part characteristics of nickel 718.
    Popli D; Batra U; Msomi V; Verma S
    Sci Rep; 2023 Jan; 13(1):1716. PubMed ID: 36720932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Response Optimization of Processing Parameters for Micro-Pockets on Alumina Bioceramic Using Rotary Ultrasonic Machining.
    Abdo BMA; Alkhalefah H; Moiduddin K; Abidi MH
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of un-deformed chip thickness in RUM process and study of size effects in μ-RUM.
    Jain AK; Pandey PM
    Ultrasonics; 2017 May; 77():1-16. PubMed ID: 28167315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on the Surface Integrity of 40Cr Steel Machined by Rotary Ultrasonic Flank Milling.
    Zhu S; Sun Y; Wang F; Gong H
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Analysis on the Influence and Optimization of μ-RUM Parameters in Machining Alumina Bioceramic.
    Abdo BMA; Anwar S; El-Tamimi AM; Nasr EA
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30781711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the AWJM Method on the Machined Surface Layer of AZ91D Magnesium Alloy and Simulation of Roughness Parameters Using Neural Networks.
    Zagórski I; Kłonica M; Kulisz M; Łoza K
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roughness model of an optical surface in ultrasonic assisted diamond turning.
    Xing Y; Liu Y; Yang C; Xue C
    Appl Opt; 2020 Nov; 59(31):9722-9734. PubMed ID: 33175808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotary ultrasonic machining of CFRP composites: a study on power consumption.
    Cong WL; Pei ZJ; Deines TW; Srivastava A; Riley L; Treadwell C
    Ultrasonics; 2012 Dec; 52(8):1030-7. PubMed ID: 22986155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of the machining characteristics in diamond wire sawing of unidirectional CFRP.
    Seeholzer L; Süssmaier S; Kneubühler F; Wegener K
    Int J Adv Manuf Technol; 2021; 117(7-8):2197-2212. PubMed ID: 34759439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical and experimental investigations on rotary ultrasonic surface micro-machining of brittle materials.
    Li Y; Zhang D; Wang H; Ye G; He R; Cong W
    Ultrason Sonochem; 2022 Sep; 89():106162. PubMed ID: 36113208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Abrasive Machining of Difficult-to-Cut Materials for Ultra-High-Speed Machining of AISI 304 Bars.
    Wang R; Lim P; Heng L; Mun SD
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28869557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Abrasive Waterjet Machining Parameters on the Condition of Al-Si Alloy.
    Kulisz M; Zagórski I; Korpysa J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32668746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drilling High Precision Holes in Ti6Al4V Using Rotary Ultrasonic Machining and Uncertainties Underlying Cutting Force, Tool Wear, and Production Inaccuracies.
    Chowdhury MAK; Sharif Ullah AMM; Anwar S
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28895876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks.
    Cong WL; Pei ZJ; Treadwell C
    Ultrasonics; 2014 Aug; 54(6):1594-602. PubMed ID: 24768497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response Surface Methods Used for Optimization of Abrasive Waterjet Machining of the Stainless Steel X2 CrNiMo 17-12-2.
    Deaconescu A; Deaconescu T
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34064660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro comparison of conventional surgical and rotary ultrasonic bone drilling techniques.
    Gupta V; Singh RP; Pandey PM; Gupta R
    Proc Inst Mech Eng H; 2020 Apr; 234(4):398-411. PubMed ID: 32026750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism and Parameter Optimization in Grinding and Polishing of M300 Steel by an Elastic Abrasive.
    Tong X; Wu X; Zhang F; Ma G; Zhang Y; Wen B; Tian Y
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30678210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material Removal Characteristics of Spherical-Array-Focused Ultrasonic Abrasive Machining.
    Du B; Wang J; Yuan J; Lyu B; Zhang X; Zhang C
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotary ultrasonic machining of CFRP: A comparison with grinding.
    Ning FD; Cong WL; Pei ZJ; Treadwell C
    Ultrasonics; 2016 Mar; 66():125-132. PubMed ID: 26614168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in-vitro study of temperature rise during rotary ultrasonic bone drilling of human bone.
    Singh RP; Pandey PM; Mridha AR
    Med Eng Phys; 2020 May; 79():33-43. PubMed ID: 32173159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.