These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36720936)

  • 1. Machine-learning-based spectral methods for partial differential equations.
    Meuris B; Qadeer S; Stinis P
    Sci Rep; 2023 Jan; 13(1):1739. PubMed ID: 36720936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks.
    Karnakov P; Litvinov S; Koumoutsakos P
    PNAS Nexus; 2024 Jan; 3(1):pgae005. PubMed ID: 38250513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PDE-LEARN: Using deep learning to discover partial differential equations from noisy, limited data.
    Stephany R; Earls C
    Neural Netw; 2024 Jun; 174():106242. PubMed ID: 38521016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
    Markidis S
    Front Big Data; 2021; 4():669097. PubMed ID: 34870188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pretraining domain decomposition method using artificial neural networks to solve elliptic PDE boundary value problems.
    Seo JK
    Sci Rep; 2022 Aug; 12(1):13939. PubMed ID: 35978098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can physics-informed neural networks beat the finite element method?
    Grossmann TG; Komorowska UJ; Latz J; Schönlieb CB
    IMA J Appl Math; 2024 Jan; 89(1):143-174. PubMed ID: 38933736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LordNet: An efficient neural network for learning to solve parametric partial differential equations without simulated data.
    Huang X; Shi W; Gao X; Wei X; Zhang J; Bian J; Yang M; Liu TY
    Neural Netw; 2024 Aug; 176():106354. PubMed ID: 38723308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-informed kernel function neural networks for solving partial differential equations.
    Fu Z; Xu W; Liu S
    Neural Netw; 2024 Apr; 172():106098. PubMed ID: 38199153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving high-dimensional partial differential equations using deep learning.
    Han J; Jentzen A; E W
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8505-8510. PubMed ID: 30082389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Second-Order Network Structure Based on Gradient-Enhanced Physics-Informed Neural Networks for Solving Parabolic Partial Differential Equations.
    Sun K; Feng X
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning Only on Boundaries: A Physics-Informed Neural Operator for Solving Parametric Partial Differential Equations in Complex Geometries.
    Fang Z; Wang S; Perdikaris P
    Neural Comput; 2024 Feb; 36(3):475-498. PubMed ID: 38363659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolution-Based Model-Solving Method for Three-Dimensional, Unsteady, Partial Differential Equations.
    Zha W; Zhang W; Li D; Xing Y; He L; Tan J
    Neural Comput; 2022 Jan; 34(2):518-540. PubMed ID: 34915572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics.
    Zhang L; You H; Gao T; Yu M; Lee CH; Yu Y
    Comput Methods Appl Mech Eng; 2023 Dec; 417(Pt B):. PubMed ID: 38292246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets.
    Wang S; Wang H; Perdikaris P
    Sci Adv; 2021 Oct; 7(40):eabi8605. PubMed ID: 34586842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network.
    Fang Z
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5514-5526. PubMed ID: 33848251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Theory of Functional Connections: A New Method for Estimating the Solutions of Partial Differential Equations.
    Leake C; Mortari D
    Mach Learn Knowl Extr; 2020 Mar; 2(1):37-55. PubMed ID: 32478283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On PDE Characterization of Smooth Hierarchical Functions Computed by Neural Networks.
    Filom K; Farhoodi R; Kording KP
    Neural Comput; 2021 Nov; 33(12):3204-3263. PubMed ID: 34710899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation.
    Alkhadhr S; Almekkawy M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley-Leverett problem.
    Rodriguez-Torrado R; Ruiz P; Cueto-Felgueroso L; Green MC; Friesen T; Matringe S; Togelius J
    Sci Rep; 2022 May; 12(1):7557. PubMed ID: 35534639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HiDeNN-FEM: A seamless machine learning approach to nonlinear finite element analysis.
    Liu Y; Park C; Lu Y; Mojumder S; Liu WK; Qian D
    Comput Mech; 2023 Jul; 72(1):173-194. PubMed ID: 38107347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.