These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36720936)

  • 21. Learning Traveling Solitary Waves Using Separable Gaussian Neural Networks.
    Xing S; Charalampidis EG
    Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FDM data driven U-Net as a 2D Laplace PINN solver.
    Maria Antony AN; Narisetti N; Gladilin E
    Sci Rep; 2023 Jun; 13(1):9116. PubMed ID: 37277366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning data-driven discretizations for partial differential equations.
    Bar-Sinai Y; Hoyer S; Hickey J; Brenner MP
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15344-15349. PubMed ID: 31311866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep learning-based surrogate models for parametrized PDEs: Handling geometric variability through graph neural networks.
    Franco NR; Fresca S; Tombari F; Manzoni A
    Chaos; 2023 Dec; 33(12):. PubMed ID: 38085228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-order fractional partial differential equation transform for molecular surface construction.
    Hu L; Chen D; Wei GW
    Mol Based Math Biol; 2013 Jan; 1():. PubMed ID: 24364020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations.
    Toledo-Marín JQ; Fox G; Sluka JP; Glazier JA
    Front Physiol; 2021; 12():667828. PubMed ID: 34248661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods.
    Saad KM; Khader MM; Gómez-Aguilar JF; Baleanu D
    Chaos; 2019 Feb; 29(2):023116. PubMed ID: 30823705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A physics-inspired neural network to solve partial differential equations - application in diffusion-induced stress.
    Xue Y; Li Y; Zhang K; Yang F
    Phys Chem Chem Phys; 2022 Mar; 24(13):7937-7949. PubMed ID: 35311865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An improved data-free surrogate model for solving partial differential equations using deep neural networks.
    Chen X; Chen R; Wan Q; Xu R; Liu J
    Sci Rep; 2021 Sep; 11(1):19507. PubMed ID: 34593943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physics-driven proper orthogonal decomposition: A simulation methodology for partial differential equations.
    Pulimeno A; Coates-Farley G; Veresko M; Jiang L; Cheng MC; Liu Y; Hou D
    MethodsX; 2023; 10():102204. PubMed ID: 37424764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A constrained backpropagation approach for the adaptive solution of partial differential equations.
    Rudd K; Di Muro G; Ferrari S
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):571-84. PubMed ID: 24807452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constructing general partial differential equations using polynomial and neural networks.
    Zjavka L; Pedrycz W
    Neural Netw; 2016 Jan; 73():58-69. PubMed ID: 26547244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Promising directions of machine learning for partial differential equations.
    Brunton SL; Kutz JN
    Nat Comput Sci; 2024 Jul; 4(7):483-494. PubMed ID: 38942926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning partial differential equations for biological transport models from noisy spatio-temporal data.
    Lagergren JH; Nardini JT; Michael Lavigne G; Rutter EM; Flores KB
    Proc Math Phys Eng Sci; 2020 Feb; 476(2234):20190800. PubMed ID: 32201481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. VIM-based dynamic sparse grid approach to partial differential equations.
    Mei SL
    ScientificWorldJournal; 2014; 2014():390148. PubMed ID: 24723805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elliptic PDE learning is provably data-efficient.
    Boullé N; Halikias D; Townsend A
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2303904120. PubMed ID: 37722063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical solution of neutral delay differential equations using orthogonal neural network.
    Vinodbhai CD; Dubey S
    Sci Rep; 2023 Feb; 13(1):3164. PubMed ID: 36823259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-series forecasting using manifold learning, radial basis function interpolation, and geometric harmonics.
    Papaioannou PG; Talmon R; Kevrekidis IG; Siettos C
    Chaos; 2022 Aug; 32(8):083113. PubMed ID: 36049932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Connections Between Numerical Algorithms for PDEs and Neural Networks.
    Alt T; Schrader K; Augustin M; Peter P; Weickert J
    J Math Imaging Vis; 2023; 65(1):185-208. PubMed ID: 36721706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sparse learning of partial differential equations with structured dictionary matrix.
    Li X; Li L; Yue Z; Tang X; Voss HU; Kurths J; Yuan Y
    Chaos; 2019 Apr; 29(4):043130. PubMed ID: 31042938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.