BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 36721119)

  • 1. Exogenous gibberellic acid shortening after-ripening process and promoting seed germination in a medicinal plant Panax notoginseng.
    Ge N; Jia JS; Yang L; Huang RM; Wang QY; Chen C; Meng ZG; Li LG; Chen JW
    BMC Plant Biol; 2023 Feb; 23(1):67. PubMed ID: 36721119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Illumina-based transcriptomic analysis on recalcitrant seeds of Panax notoginseng for the dormancy release during the after-ripening process.
    Yang K; Yang L; Fan W; Long GQ; Xie SQ; Meng ZG; Zhang GH; Yang SC; Chen JW
    Physiol Plant; 2019 Dec; 167(4):597-612. PubMed ID: 30548605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous abscisic acid prolongs the dormancy of recalcitrant seed of
    Wang QY; Yang L; Ge N; Jia JS; Huang RM; Chen C; Meng ZG; Li LG; Chen JW
    Front Plant Sci; 2023; 14():1054736. PubMed ID: 36866363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iTRAQ and RNA-seq analyses provide an insight into mechanisms of recalcitrance in a medicinal plant Panax notoginseng seeds during the after-ripening process.
    Ge N; Yang K; Yang L; Meng ZG; Li LG; Chen JW
    Funct Plant Biol; 2021 Dec; 49(1):68-88. PubMed ID: 34822750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in Fraxinus hupehensis.
    Song Q; Cheng S; Chen Z; Nie G; Xu F; Zhang J; Zhou M; Zhang W; Liao Y; Ye J
    BMC Plant Biol; 2019 May; 19(1):199. PubMed ID: 31092208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptome analysis reveals the potential mechanism of GA
    Wang H; Xu T; Li Y; Gao R; Tao X; Song J; Li C; Li Q
    Front Plant Sci; 2024; 15():1354141. PubMed ID: 38919815
    [No Abstract]   [Full Text] [Related]  

  • 7. Genome-wide identification and characterization of members of the LEA gene family in Panax notoginseng and their transcriptional responses to dehydration of recalcitrant seeds.
    Jia JS; Ge N; Wang QY; Zhao LT; Chen C; Chen JW
    BMC Genomics; 2023 Mar; 24(1):126. PubMed ID: 36932328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Affection of exogenous gibberellic acid (GA3) on endogenus hormones of Panax quinquefolium seed during its morphological after ripening period].
    Zhao Y; Liu H; Liu T; Fu J; Liu W; Zhang X
    Zhong Yao Cai; 2000 Oct; 23(10):591-3. PubMed ID: 12575034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melatonin promotes seed germination under salt stress by regulating ABA and GA
    Chen L; Lu B; Liu L; Duan W; Jiang D; Li J; Zhang K; Sun H; Zhang Y; Li C; Bai Z
    Plant Physiol Biochem; 2021 May; 162():506-516. PubMed ID: 33773227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice.
    Du W; Cheng J; Cheng Y; Wang L; He Y; Wang Z; Zhang H
    Plant Biol (Stuttg); 2015 Nov; 17(6):1156-64. PubMed ID: 26205956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.
    Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J
    BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of different water conditions on Panax notoginseng seeds after-ripening and germination physiology].
    Liao PR; Cui XM; Yang Y; Qu Y; Wang CX; Yang XY; Xiong Y
    Zhongguo Zhong Yao Za Zhi; 2016 Jun; 41(12):2194-2200. PubMed ID: 28901059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of root length on epicotyl dormancy release in seeds of Paeonia ludlowii, Tibetan peony.
    Hao HP; He Z; Li H; Shi L; Tang YD
    Ann Bot; 2014 Feb; 113(3):443-52. PubMed ID: 24284815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting seed dormancy and germination in Aquilegia barbaricina, through thermal kinetics of embryo growth.
    Porceddu M; Mattana E; Pritchard HW; Bacchetta G
    Plant Biol (Stuttg); 2017 Nov; 19(6):983-993. PubMed ID: 28762612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of genes involved in metabolism and signalling of abscisic acid and gibberellins during Epimedium pseudowushanense B.L.Guo seed morphophysiological dormancy.
    Ma Y; Chen X; Guo B
    Plant Cell Rep; 2018 Jul; 37(7):1061-1075. PubMed ID: 29796945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Analysis of the Transcriptome and Metabolome Revealed Candidate Genes Involved in GA
    Li B; Zhang P; Wang F; Li R; Liu J; Wang Q; Liu W; Wang B; Hu G
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920519
    [No Abstract]   [Full Text] [Related]  

  • 17. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination.
    Xu P; Tang G; Cui W; Chen G; Ma CL; Zhu J; Li P; Shan L; Liu Z; Wan S
    PLoS One; 2020; 15(1):e0219413. PubMed ID: 31899920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating seed dormancy in cotton (Gossypium hirsutum L.): understanding the physiological changes in embryo during after-ripening and germination.
    Wang LR; Yang XN; Gao YS; Zhang XY; Hu W; Zhou Z; Meng YL
    Plant Biol (Stuttg); 2019 Sep; 21(5):911-919. PubMed ID: 31077623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome profiles revealed molecular mechanisms of alternating temperatures in breaking the epicotyl morphophysiological dormancy of Polygonatum sibiricum seeds.
    Liao D; An R; Wei J; Wang D; Li X; Qi J
    BMC Plant Biol; 2021 Aug; 21(1):370. PubMed ID: 34384392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos.
    Cembrowska-Lech D; Kępczyński J
    Planta; 2016 Feb; 243(2):531-48. PubMed ID: 26526413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.