These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36721646)

  • 1. A Survey of Robotic Harvesting Systems and Enabling Technologies.
    Droukas L; Doulgeri Z; Tsakiridis NL; Triantafyllou D; Kleitsiotis I; Mariolis I; Giakoumis D; Tzovaras D; Kateris D; Bochtis D
    J Intell Robot Syst; 2023; 107(2):21. PubMed ID: 36721646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensor-Driven Human-Robot Synergy: A Systems Engineering Approach.
    Tsolakis N; Gasteratos A
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Fruit Recognition and Grasping Estimation for Robotic Apple Harvesting.
    Kang H; Zhou H; Wang X; Chen C
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A field-tested robotic harvesting system for iceberg lettuce.
    Birrell S; Hughes J; Cai JY; Iida F
    J Field Robot; 2020 Mar; 37(2):225-245. PubMed ID: 32194355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agricultural Robotics for Field Operations.
    Fountas S; Mylonas N; Malounas I; Rodias E; Hellmann Santos C; Pekkeriet E
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32392872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Autonomous Fruit and Vegetable Harvester with a Low-Cost Gripper Using a 3D Sensor.
    Zhang T; Huang Z; You W; Lin J; Tang X; Huang H
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning-Based Slip Detection for Robotic Fruit Grasping and Manipulation under Leaf Interference.
    Zhou H; Xiao J; Kang H; Wang X; Au W; Chen C
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous Robotic System to Prune Sweet Pepper Leaves Using Semantic Segmentation with Deep Learning and Articulated Manipulator.
    Giang TTH; Ryoo YJ
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft Grippers for Automatic Crop Harvesting: A Review.
    Navas E; Fernández R; Sepúlveda D; Armada M; Gonzalez-de-Santos P
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Concept of the Constructional Solution of the Working Section of a Robot for Harvesting Strawberries.
    Kurpaska S; Bielecki A; Sobol Z; Bielecka M; Habrat M; Śmigielski P
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologically inspired robotic perception-action for soft fruit harvesting in vertical growing environments.
    Wang F; Urquizo RC; Roberts P; Mohan V; Newenham C; Ivanov A; Dowling R
    Precis Agric; 2023; 24(3):1072-1096. PubMed ID: 37152437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apple-Harvesting Robot Based on the YOLOv5-RACF Model.
    Zhu F; Zhang W; Wang S; Jiang B; Feng X; Zhao Q
    Biomimetics (Basel); 2024 Aug; 9(8):. PubMed ID: 39194474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic Platform for Horticulture: Assessment Methodology and Increasing the Level of Autonomy.
    Kutyrev A; Kiktev N; Jewiarz M; Khort D; Smirnov I; Zubina V; Hutsol T; Tomasik M; Biliuk M
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure Handling of Robotic Pick and Place Tasks With Multimodal Cues Under Partial Object Occlusion.
    Zhu F; Wang L; Wen Y; Yang L; Pan J; Wang Z; Wang W
    Front Neurorobot; 2021; 15():570507. PubMed ID: 33762921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Aerial Robots with Grasping and Perching Capabilities: A Comprehensive Review.
    Meng J; Buzzatto J; Liu Y; Liarokapis M
    Front Robot AI; 2021; 8():739173. PubMed ID: 35399745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. μRALP and Beyond: Micro-Technologies and Systems for Robot-Assisted Endoscopic Laser Microsurgery.
    Mattos LS; Acemoglu A; Geraldes A; Laborai A; Schoob A; Tamadazte B; Davies B; Wacogne B; Pieralli C; Barbalata C; Caldwell DG; Kundrat D; Pardo D; Grant E; Mora F; Barresi G; Peretti G; Ortiz J; Rabenorosoa K; Tavernier L; Pazart L; Fichera L; Guastini L; Kahrs LA; Rakotondrabe M; Andreff N; Deshpande N; Gaiffe O; Renevier R; Moccia S; Lescano S; Ortmaier T; Penza V
    Front Robot AI; 2021; 8():664655. PubMed ID: 34568434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Operational Elements of the Robotic Subsystem for the e.deorbit Debris Removal Mission.
    Jaekel S; Lampariello R; Rackl W; De Stefano M; Oumer N; Giordano AM; Porges O; Pietras M; Brunner B; Ratti J; Muehlbauer Q; Thiel M; Estable S; Biesbroek R; Albu-Schaeffer A
    Front Robot AI; 2018; 5():100. PubMed ID: 33500979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gesture-Controlled Robotic Arm for Agricultural Harvesting Using a Data Glove with Bending Sensor and OptiTrack Systems.
    Yu Z; Lu C; Zhang Y; Jing L
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovative 3D and 2D machine vision methods for analysis of plants and crops in the field.
    Smith LN; Zhang W; Hansen MF; Hales IJ; Smith ML
    Comput Ind; 2018 May; 97():122-131. PubMed ID: 29997402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dataset of annotated food crops and weed images for robotic computer vision control.
    Sudars K; Jasko J; Namatevs I; Ozola L; Badaukis N
    Data Brief; 2020 Aug; 31():105833. PubMed ID: 32577458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.