BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36721706)

  • 1. Connections Between Numerical Algorithms for PDEs and Neural Networks.
    Alt T; Schrader K; Augustin M; Peter P; Weickert J
    J Math Imaging Vis; 2023; 65(1):185-208. PubMed ID: 36721706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing rotationally invariant neural networks from PDEs and variational methods.
    Alt T; Schrader K; Weickert J; Peter P; Augustin M
    Res Math Sci; 2022; 9(3):52. PubMed ID: 35941960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley-Leverett problem.
    Rodriguez-Torrado R; Ruiz P; Cueto-Felgueroso L; Green MC; Friesen T; Matringe S; Togelius J
    Sci Rep; 2022 May; 12(1):7557. PubMed ID: 35534639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards bi-directional skip connections in encoder-decoder architectures and beyond.
    Xiang T; Zhang C; Wang X; Song Y; Liu D; Huang H; Cai W
    Med Image Anal; 2022 May; 78():102420. PubMed ID: 35334445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can physics-informed neural networks beat the finite element method?
    Grossmann TG; Komorowska UJ; Latz J; Schönlieb CB
    IMA J Appl Math; 2024 Jan; 89(1):143-174. PubMed ID: 38933736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.
    Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K
    Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation.
    Alkhadhr S; Almekkawy M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Second-Order Network Structure Based on Gradient-Enhanced Physics-Informed Neural Networks for Solving Parabolic Partial Differential Equations.
    Sun K; Feng X
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated Variational PDEs for Efficient Solution of Regularized Inversion Problems.
    Benyamin M; Calder J; Sundaramoorthi G; Yezzi A
    J Math Imaging Vis; 2020 Jan; 62(1):10-36. PubMed ID: 34079176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented Graph Neural Network with hierarchical global-based residual connections.
    Rassil A; Chougrad H; Zouaki H
    Neural Netw; 2022 Jun; 150():149-166. PubMed ID: 35313247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of recurrent neural networks for solving constrained least absolute deviation problems.
    Hu X; Sun C; Zhang B
    IEEE Trans Neural Netw; 2010 Jul; 21(7):1073-86. PubMed ID: 20562048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics-incorporated convolutional recurrent neural networks for source identification and forecasting of dynamical systems.
    Saha P; Dash S; Mukhopadhyay S
    Neural Netw; 2021 Dec; 144():359-371. PubMed ID: 34547672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-Space Representations of Deep Neural Networks.
    Hauser M; Gunn S; Saab S; Ray A
    Neural Comput; 2019 Mar; 31(3):538-554. PubMed ID: 30645180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tackling the curse of dimensionality with physics-informed neural networks.
    Hu Z; Shukla K; Karniadakis GE; Kawaguchi K
    Neural Netw; 2024 Aug; 176():106369. PubMed ID: 38754287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Norm-Preservation: Why Residual Networks Can Become Extremely Deep?
    Zaeemzadeh A; Rahnavard N; Shah M
    IEEE Trans Pattern Anal Mach Intell; 2021 Nov; 43(11):3980-3990. PubMed ID: 32340937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving high-dimensional partial differential equations using deep learning.
    Han J; Jentzen A; E W
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8505-8510. PubMed ID: 30082389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On PDE Characterization of Smooth Hierarchical Functions Computed by Neural Networks.
    Filom K; Farhoodi R; Kording KP
    Neural Comput; 2021 Nov; 33(12):3204-3263. PubMed ID: 34710899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Theory of Functional Connections: A New Method for Estimating the Solutions of Partial Differential Equations.
    Leake C; Mortari D
    Mach Learn Knowl Extr; 2020 Mar; 2(1):37-55. PubMed ID: 32478283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why ResNet Works? Residuals Generalize.
    He F; Liu T; Tao D
    IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5349-5362. PubMed ID: 32031953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.