These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36721779)

  • 1. Applicability of VGGish embedding in bee colony monitoring: comparison with MFCC in colony sound classification.
    Di N; Sharif MZ; Hu Z; Xue R; Yu B
    PeerJ; 2023; 11():e14696. PubMed ID: 36721779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds.
    Ribeiro AP; da Silva NFF; Mesquita FN; Araújo PCS; Rosa TC; Mesquita-Neto JN
    PLoS Comput Biol; 2021 Sep; 17(9):e1009426. PubMed ID: 34529654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Study of Machine Learning Models for Bee Colony Acoustic Pattern Classification on Low Computational Resources.
    Robles-Guerrero A; Saucedo-Anaya T; Guerrero-Mendez CA; Gómez-Jiménez S; Navarro-Solís DJ
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mel frequency cepstral coefficient temporal feature integration for classifying squeak and rattle noise.
    Abeysinghe A; Fard M; Jazar R; Zambetta F; Davy J
    J Acoust Soc Am; 2021 Jul; 150(1):193. PubMed ID: 34340510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Level CNN and Machine Learning Methods for Speaker Recognition.
    Costantini G; Cesarini V; Brenna E
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bee Swarm Activity Acoustic Classification for an IoT-Based Farm Service.
    Zgank A
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic acoustic recognition of pollinating bee species can be highly improved by Deep Learning models accompanied by pre-training and strong data augmentation.
    Ferreira AIS; da Silva NFF; Mesquita FN; Rosa TC; Monzón VH; Mesquita-Neto JN
    Front Plant Sci; 2023; 14():1081050. PubMed ID: 37123860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of the SVM and K-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals.
    Palaniappan R; Sundaraj K; Sundaraj S
    BMC Bioinformatics; 2014 Jun; 15():223. PubMed ID: 24970564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Collection, Modeling, and Classification for Gunshot and Gunshot-like Audio Events: A Case Study.
    Baliram Singh R; Zhuang H; Pawani JK
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards acoustic monitoring of bees: wingbeat sounds are related to species and individual traits.
    Rodríguez Ballesteros A; Desjonquères C; Hevia V; García Llorente M; Ulloa JS; Llusia D
    Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230111. PubMed ID: 38705186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting deep neural network and long short-term memory method-ologies in bioacoustic classification of LPC-based features.
    Gong CA; Su CS; Chao KW; Chao YC; Su CK; Chiu WH
    PLoS One; 2021; 16(12):e0259140. PubMed ID: 34941869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VGGish-based detection of biological sound components and their spatio-temporal variations in a subtropical forest in eastern China.
    Wang M; Mei J; Darras KF; Liu F
    PeerJ; 2023; 11():e16462. PubMed ID: 38025750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Survey of Feature Extraction and Machine Learning Methods in Diverse Acoustic Environments.
    Bonet-Solà D; Alsina-Pagès RM
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Bird Sound Recognition Method Based on Multifeature Fusion and a Transformer Encoder.
    Zhang S; Gao Y; Cai J; Yang H; Zhao Q; Pan F
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bird sound recognition based on adaptive frequency cepstral coefficient and improved support vector machine using a hunter-prey optimizer.
    Chen X; Zeng Z
    Math Biosci Eng; 2023 Oct; 20(11):19438-19453. PubMed ID: 38052608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks.
    Deng M; Meng T; Cao J; Wang S; Zhang J; Fan H
    Neural Netw; 2020 Oct; 130():22-32. PubMed ID: 32589588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Honey bee colony performance affected by crop diversity and farmland structure: a modeling framework.
    Horn J; Becher MA; Johst K; Kennedy PJ; Osborne JL; Radchuk V; Grimm V
    Ecol Appl; 2021 Jan; 31(1):e02216. PubMed ID: 32810342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic fish sounds classification.
    Malfante M; Mars JI; Dalla Mura M; Gervaise C
    J Acoust Soc Am; 2018 May; 143(5):2834. PubMed ID: 29857733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children].
    Yan WY; Li L; Yang YG; Lin XL; Wu JZ
    Zhonghua Er Ke Za Zhi; 2016 Aug; 54(8):605-9. PubMed ID: 27510874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.